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Preface

Electromagnetic Wave Theory is designed for an advanced cotrse in
electromagnetic waves at the senior undergraduaic or first-y car gradu
ate level in an electrical engineering curriculum. It is assumed that an
individual reading this book will have had at least one course in electro-
magnetics with knowledge of static fields. as well as an introduction o
Maxwell's equations. Additionally, this book should appeal to practicing
engineers as a useful reference. An attempt is made to present the
subject in.a self-contained format. The essential mathematics, such us
vector analysis and special functions, are reviewed it a concise manner.

A central theme of the book is the impedance concept applied to the
description of wave phenomena. This point of view hus its crigiuin the
profound ideas of Sergei Schelkunoft and Henry Booker i the 1940s.
This approach is very fruitful in systematiziug the <olutions of a wide
class of boundary value problems. We do not try to be comyrelicnsive,
but a representative selection of topics that vields to this approach is
considered. In particular, problems of current refevance to rudio wave
propagation and antennas are emphasiz . Some of these ore draw
from the author’s own research, but an attenipt has been made to put the
results in a general context.



x PREFACE

Taking a somewhat traditional viewpoint, the book begins with a
review of stationary fields. The concept of potential is important if one is
to really appreciate the meaning of static-like fields. It is not sufficient
just to let the frequency tend to zero in dynamic formulations. Also, the
boundary value problems for stationary fields can be best illustrated
when the fields can be derived from a scalar potential. This sets the scene
for later vector formulations under truly dynamic conditions.

A somewhat novel departure from many texts on EM theory is that
we develop many of the essential ideas in wave propagation by treating
purely scalar problems in one, two, and three dimensions. The loss in
generality is later recovered when we address some of the same prob-
lems when vector solutions of Maxwell’s equations are required.

Not only is the impedance concept expounded, but transmission-
line theory is used consistently to formulate boundary value problems
even for fairly complicated geometries. Also, many of the wave theory
results are interpreted by equivalent transmission line circuits. We feel
this helps the reader see the essential unity of the subject.

Exercises for the reader are located at various spots in the text.
These are phrased in such a manner that the desired results of the
derivation are given. In some cases these exercises allow the reader the
opportunity to test his understanding by working out a closely related
problem.

A few bits of information should stand as guides for easier reading.
The rationalized meter-kilogram-second (MKS) system of units is used
consistently. This is now referred to as the System Internationale (S.1.).
Equation numbers are in parentheses and cited as such in each chapter.
Thus, for example, a reference to (9) in Chapter II refers te equation
number 9 in this chapter. In a few cases where references are made in
Chapter II to equations in other chapters, an explicit statement is made
accordingly. References to the literature are listed at the end of each
chapter. They are cited in the text by a number in square brackets. Thus,
for example, [10] in Chapter II is the tenth reference cited. This is
essentially the IEEE system. Appendixes to individual chapters are
identified by lower case letters and cited as such in the foregoing
chapter.

I am extremely grateful to Professor E. Bahar, Professor C. Balanis,
and the other reviewers for their useful comments and critical remarks
concerning the presentation of the derivations. Also, I wish to thank my
colleagues at the University of Arizona and the University of Colorado
for their support and encouragement over the years. In particular, I
would like to mention Professors R. H. Mattson, D. G. Dudley, T. Triffet,
and A. Q. Howard in Tucson and Professors D. C. Chang and S. W. Maley
in Boulder. Some of the chapters were typed by Joann Main and Robin-
Voustas in Tucson, for which I am very appreciative.

JAMES R. WAIT
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Chapter 1
Electrostatics and
Magnetostatics

1.1 COULOMB’S LAW

We begin with a review of electrostatic field theory. This review serves
as a useful background for treating more realistic and useful time-vary-
ing electromagnetic fields.

Electrostatics is founded on the basis that certain fundamental
relations exist or characterize the field behavior. These relations have
their origin primarily in experimental observations. For example, Cou-
lomb’s law is a statement that a force f exists between two point charges
g, and g, that are separated by a distance r. This force is found experi-
mentally to obey an inverse square law according to
f= constant X % (1.1)
In the rationalized MKS (meter-kilogram-second) system of units this
constant is (47€)!, where € is the permittivity of the dielectric that
contains these charges. In this same system of units, which has been
accepted internationally, g, and g, are expressed in coulombs, fis in

1



2 ELECTROSTATICS AND MAGNETOSTATICS

¢ 1s in farads per meter. Then for free space e =€, =~
= /3672 X 1079 F/m.
To be explicit, Coulomb’'s law in MKS units is

Cowtons, and
12

NETY ;” .

[ =tAL (1.2)
iner?
where the direction of the force is along the line joining the two charges.
somdicated. fs an attractive force when gy and g, are of opposite sign
Corevample, an electren aad @ proton), but the force is repulsive when
s foave the sane sign
Hwe think of g, s Being asource point charge, then the force acting

on Lost clarce o
f= Eq, (1.3)
where
g {1
E= 1.4
{mer? a4

is. bv definition, the electric field strength at the point charge ¢,. This
value of E does not depend on the test charge. and, in fact we may allow
(5 to approach zero in the limit.

To indicate the vector nature of the electric field strength E, we are
led to write

{1
T dmert " B

where ris the unit vector in the r or radial direction from the charge g, to
the point where the field is to be ol:served. In what follows we drop the
subscript 1 on the charge ¢,; this procedure should not cause any
confusion.

It is evident that E associated with a charge ¢ depends on the
permittivity € of the medium. Clearly. in the present context we can
define a vector tlux density D associated with a charge g according to

13 == s 18

where we may note that 47r2is the area of the enclosed spherical surface
of radius r. Here the vector flux density or vector displacement has units
of coulombs per squere meter. Furthermore, D does not depend on the
permittivity € of the surrounding medium.

Bv comparing Equations (1.5) and (1.6), we observe that

D =¢E (17)

Actually this result holds for all isotropic media even when the permit-



1.2 GAUSS' LAW 3

" tivity € is dependent on the coordinates (that is, the medium is inhomo-

geneous).
When the medium is anisotropic, we generalize (1.7) to the form
D = [¢|]E (1.8)
which, in fact, is a statement that
D, =¢€,E, + €,E, + €,E, (1.9)
D, =€y E, + €;,E, + €53E, (1.10)
D, = €3 E, + €3,E, + €;53E, (1.11)

In the limiting case where
€11 T €9 T €33 = €
and
€;=0 fori#j

the medium becomes isotropic. We defer here any further reference to
anisotropic media.

1.2 GAUSS’ LAW

We now deal with Gauss’ law by referring to the situation shown in
Figure 1.1. As we see, the displacement or flux density vector D ema-
nates radially from the charge g, and it subtends a local angle 6 with the
normal unit vector n to a closed surface S. The flux through the element
da in the surface is

d¥Y =D da cos 0

Figure 1.1 Point charge g enclosed by closed surface S and elemental area da
of surface.
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But by definition, the element of solid angle subtended by da at g is

208 )
do = decos? o (1.12)
.
Thus
d¥ = Dr2 dQ (1.13)
But
q
= 1.14
b 4nr? ( )
so that we have the incredibly simple result that
dQ
V¥=qg— 1.15
( iy (1.19)
If we now integrate over all solid angles, noting that
é dQ = 4n (1.16)
we deduce that
Y=g (1.17)

This equation is a statement of Gauss’ law, which tells us that the total
displacement or flux through any closed surface is equal to the amount of
charge enclosed.

A simple extension of Equation (1.17), written in vector form, is

9€‘D-da=J'pdV . (1.18)
S A%

where da is a vector aligned with the normal to the surface with area da
(note that D + da = D da cos 6); on the right-hand side p is the charge
density in coulombs per cubic meter. Equation (1.18) is a statement of
Gauss’” law. An alternative form is simply V * D = p. Or in the case of a
homogeneous medium, V - E = p/e.

1.3 POTENTIAL CONCEPT

We may now int:oduce the concept of potential V at a point resulting
from a charge g in coulombs. The potential V can be defined as the work
done to move a unit test charge from infinity up to a point a distance r
from the source charge g. Clearly, the work is obtained from the relation

Work = -—j E, dr (1.19)

o



1.4 DIPOLE CONCEPT 5

where E_is the force in the radial direction, given by

q

_ (1.20
" 4nmer? (120
Thus on integrating (1.20), we see that
q
V= 1.21
4mer (.21)

It is the so-called conservative property of static fields that the scalar
quantity V is the same for any path drawn from infinity up to the field
point at a radial distance r from g.

The relationship of electric field and potential follows quite easily.
Here we might consider two points separated by a vector distance ds
where the electric field E is measured. Now the work done dV in moving
a unit charge through this infinitesimal distance is clearly

dV=—E - ds (1.22)
But we can also write
oV A% oV
dV=—dx+—dy+—dz=VV - ds (1.23)
ox dy 0z
where
aV oV A%
VV=j —+1 — ] — 1.24
T ox dy " %z 024
and
ds=i dx+i,dy+i,dz (1.25)

Here, of course, i, i,, and i, are unit vectors in the x, y, and z directions,
respectively. Now Equations (1.22) - (1.25) tell us that for conservative
or static fields

E=-vV (1.26)

where U is the gradient operator defined by (1.24). An equivalent
statement, preferred by this writer, is

E=—grad V (1.27)

where grad is the abbreviation for gradient. Of course, (1.26) and (1.27)
hold in any orthogonal coordinate system.

1.4 DIPOLE CONCEPT

Another important concept is the dipole. To illustrate, we first consider
two charges +¢q and — g separated by a distance ¢, as indicated in Figure
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Figure 1.2 Geometry for calculating potential of two charges of equal and
opposite sign.

1.2. The distance from + g to the field point P is r*, while the distance
from —q to the field point is r~. The resultant potential at P is given by

v (% _ _q:> (1.28)

where € is the permittivity of the homogeneous host medium. Now we
will consider the case where r > ¢, whence

rt=r— (§>cos 0 (1.29)
and
3 ¢
rr=r+ (i)cos ) (1.30)

where 6 is the angle subtended by the line drawn from the center point
of the charges to the field point and the vertical axis through + g and —g.

Exercise: Derive an explicit expression for V, valid if rand £ are arbitrary,
in terms of r and 6.

From (1.29) and (1.30) it follows that (1.28) simplifies in the manner

V~q|' 1 1 ]

Amel r— (£/2)cos O e (¢/2)cos 6

= cos b (1.31)
r
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Now bearing in mind that symmetry about the polar axis prevails, it
follows that in spherical coordinates (r, 8, @)

E,,=—5:— py— cos 8 (1.32)
10V gt .

_ Ee r 90  4dnmerd " d (1.33)

Ed,:

As perceptive readers will note, the potential expression in (1.31)
and the field expressions in (1.32) and (1.33) are only valid if £ < r. But
they might also assert that these expressions are valid for all nonzero
values of r if ¢ is infinitesimal or effectively so. In this case we should
replace ¢ by, say, the differential ds; this replacement will be done in anv
further discussion of dipole fields. Incidentally, the term dipole should
be reserved to describe the infinitesimal element and not be used in the
context of linear antennas of finite length.

1.5 CHARGED LINE SOURCE

Another useful model is a uniform line charge. Such a configuration has
an obvious cylindrical symmetry. Thus with reference to the cylindrical
coordinates (p, ¢, z), we locate the line charge along the z axis, and it
extends from z = — to + with a uniform charge § C/m. Now it is not
difficult to see that the flux density vector has only a radial p component.
and it is given by

=L c/m? (134
D, 55 C/m (1.34)
The corresponding electric field component is then

D, §g
=—=——V 1.35
E, € 2nep js {13

Now the potential V at the radial distance p is related to E, by

A%
——— = 1.36
% E, (1.36)
This equation tells us that
P
V=—f E,dp (1.37)

where we have an indefinite integral on the right. On using (1.35), we
see that

, q
V=———1In p + constant ' 1.38
o1 P (1.38)
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where, again, it is understood that the surrounding medium of permit-
tivity € is homogeneous and isotropic.

A simple application of the preceding results tells us that the
difference of potential AV, between the surfaces p = a, and p = a, for the
line charge g at p = 0, is given by

av="T & (1.39)

2ne  aq

A slightly different formulation of the above problem would be to
regard the surface p = e as a perfectly conducting equipotential surface.
Again we can let § be the total charge per unit length. Then (1.34) and
(1.35) still apply for the region p > a,. Now we also regard p = a, as a
perfectly conducting surface. The difference of potential between these
two concentric equipotential surfaces is given precisely by (1.39). The
latter can be written in the equivalent form

— (_’).
AV=> (1.40)
where
2me
C=——— 1.41
In(ay/a;) W5

by definition, is the capacitance per unit length. In other words, if we
“apply” a voltage AV between these surfaces that are initially un-
charged, we find that the inner surface has a total charge § per unit
length given by

Gg=CAV

Then because total charge must be conserved, the charge on the outer
concentric cvlindrical is —§ C/m.

1.6 PARALLEL CYLINDRICAL CONDUCTORS

Another cylindrical problem is to determine the capacity between two
cylindrical conductors that are not concentric. One simple way to deal
with this situation is to begin with the potential expression for two
parallel line charges of strengths ¢ and — g, respectively. These charges
are illustrated in Figure 1.3, where the line charges are located at points
(+) and (=) separated by a distance d. The resultant potential at P with
rectangular coordinates (x, y, z) is clearly
r
V= 567]?6_ In = (1.42)



