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Foreword

The present book is meant as a text for a course in linear algebra, at the
undergraduate level. Enough material has been included for a one-year
course, but by suitable omissions, it will also be easy to use the book for
one term.

During the past decade, the curriculum for algebra courses at the under-
graduate level has shifted its emphasis towards linear algebra. The shift
is partly due to the recognition that this part of algebra is easier to under-
stand than some other parts (being less abstract, and in any case being
directly motivated by spatial geometry), and partly because of the wide
applications which exist for linear algebra. Consequently, I have started
the book with the basic notion of vector in real Euclidean space, which
sets the general pattern for much that follows. The chapters on groups
and rings are included because of their important relation to the linear
algebra, the group of invertible linear maps (or matrices) and the ring of
linear maps of a vector space being perhaps the most striking examples of
groups and rings. The fact that a vector space over a field can be viewed
fruitfully as a module over its ring of endomorphisms is worth emphasizing
as part of a linear algebra course. However, because of the general intent
of the book, these chapters are not treated with quite the same degree of
completeness which they might otherwise receive, and a short text on basic
algebraic structures (groups, rings, fields, sets, etc.) will accompany this
one to offer the opportunity of teaching a separate one-term course on
these matters, principally intended for mathematics majors.

The tensor product, and especially the alternating product, are so im-
portant in courses in advanced calculus that it was imperative to insert a
chapter on them, keeping the applications in mind. The limited purpose
of the chapter here allows for concreteness and simplicity.

The appendix on convex sets pursues some of the geometric ideas of
Chapter I, taking for granted some standard facts about continuous func-
tions on compact sets, closures of sets, ete. It can essentially be read after
Chapter I, and after knowing the definition of a linear map. Various odds
and ends are given in a second appendix (including a proof of the algebraic
closure of the complex numbers), which can be covered according to the
judgement of the instructor.
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vi FOREWORD

The basic portion of this book, on vector spaces, matrices, linear maps,
and determinants is now published separately as Introduction to Linear
Algebra, with additional simplifications of language and text. For instance,
we take vector spaces over the reals, we consider only the positive definite
scalar product, we omit the dual space, etc., which are less worthy of
emphasis for a first introduction, needed in immediate applications, e.g.
in calculus. In the more complete text of a full course in linear algebra,
these topics are of course included, as are many others, especially the
structure theorems which form Part Two: spectral theorem, for symmetric,
hermitian, unitary operators; triangulation theorems (including the Jordan
normal form); primary decomposition; Schur’s lemma; the Wedderburn-
Rieffel theorem (with Rieffel’s beautifully simple proof); etc. Of course,
better students can handle the more complete book at once, but I hope that
the separation will be pedagogically useful for others.

In this second edition, I have rewritten a few sections, and inserted a
few new topics. I have also added many new exercises.

New York, 1970 SERGE LaNG
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BASIC THEORY






CHAPTER 1

Vectors

The concept of a vector is basic for the whole course. It provides
geometric motivation for everything that follows. Hence the properties
of vectors, both algebraic and geometric, will be discussed in full.

The cross product is included for the sake of completeness. It is almost
never used in the rest of the book. It is the only aspect of the theory of
vectors which is valid only in 3-dimensional space (not 2, nor 4, nor
n-dimensional space). One significant feature of almost all the statements
and proofs of this book (except for those concerning the cross product
and determinants), is that they are neither easier nor harder to prove in
3- or n-space than they are in 2-space.

§1. Definition of points in n-space

We know that a number can be used to represent a point on a line,
once a unit length is selected.

A pair of numbers (i.e. a couple of numbers) (z,y) can be used to
represent a point in the plane.

These representations can be represented in a picture as follows.

Y=y

) S

0 T |
(a) Point on a line (b) Point in a plane

Figure 1

We now observe that a triple of numbers (z, y, z) can be used to repre-
sent a point in space, that is 3-dimensional space, or 3-space. We simply
introduce one more axis. The following picture illustrates this.

3
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Instead of using z, y, z we could also use (z1, 2, z3). The line could
be called 1-space, and the plane could be called 2-space.

Thus we can say that a single number represents a point in 1-space. A
couple represents a point in 2-space. A triple represents a point in 3-space.

Although we cannot draw a picture to go further, there is nothing to
prevent us from considering a quadruple of numbers

(Il’ T2, X3, I4)

and decreeing that this is a point in 4-space. A quintuple would be a
point in 5-space, then would come a sextuple, septuple, octuple, . . . .

We let ourselves be carried away and define a point in n-space to be
an n-tuple of numbers

(z1, 72, ..., Z0),

if n is a positive integer. We shall denote such an n-tuple by a capital
letter X, and try to keep small letters for numbers and capital letters for
points. We call the numbers z,, . . ., z, the coordinates of the point X.
For example, in 3-space, 2 is the first coordinate of the point (2, 3, —4),
and —4 is its third coordinate.

Most of our examples will take place when n = 2 or n = 3. Thus the
reader may visualize either of these two cases throughout the book. How-
ever, two comments must be made: First, practically no formula or
theorem is simpler by making such assumptions on n. Second, the case
n = 4 does occur in physics, and the case n = n occurs often enough in
practice or theory to warrant its treatment here. Furthermore, part of
our purpose is in fact to show that the general case is always similar to the
case whenn = 2 orn = 3.

Ezxamples. One classical example of 3-space is of course the space we
live in. After we have selected an origin and a coordinate system, we can
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describe the position of a point (body, particle, etc.) by 3 coordinates.
Furthermore, as was known long ago, it is convenient to extend this space
to a 4-dimensional space, with the fourth coordinate as time, the time
origin being selected, say, as the birth of Christ—although this is purely
arbitrary (it might be more convenient to select the birth of the solar
system, or the birth of the earth as the origin, if we could determine these
accurately). Then a point with negative time coordinate is a BC point,
and a point with positive time coordinate is an AD point.

Don’t get the idea that “time is the fourth dimension”, however. The
above 4-dimensional space is only one possible example. In economics,
for instance, one uses a very different space, taking for coordinates, say,
the number of dollars expended in an industry. For instance, we could
deal with a 7-dimensional space with coordinates corresponding to the
following industries:

1. Steel 2. Auto 3. Farm products 4. Fish

5. Chemicals 6. Clothing 7. Transportation
We agree that a megabuck per year is the unit of measurement. Then a point
(1,000, 800, 550, 300, 700, 200, 900)

in this 7-space would mean that the steel industry spent one billion dollars
in the given year, and that the chemical industry spent 700 million dollars
in that year.

We shall now define how to add points. If A, B are two points, say
A= (a...,a,), B = (by,...,b,),
then we define A + B to be the point whose coordinates are
(ay + by, ...,a, + by).
For example, in the plane, if A = (1, 2) and B = (—3, 5), then
A+ B=(—27).
In 3-space, if A = (—1, 7, 3) and B = (\/2,7, —2), then
A+B=H2—1,7+71).

Furthermore, if ¢ is any number, we define cA to be the point whose
coordinates are

(cay, ..., cap).

If A= (2,—1,5) and ¢ = 7, then cA = (14, —7, 35).
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We observe that the following rules are satisfied:
(1) (A+B)+C=A4+(B+O0).

(2) A+B=B+ A.

3) ¢(A + B) = cA + cB.

(4) If ¢y, cg are numbers, then

(c1 +c2)A = c1A +c24 and (c1e9) A = c1(c24).
(5) If we let O = (0,...,0) be the point all of whose coordinates

are 0, then O + A = A + O = A for all A.
(6) 1- A = A, and if we denote by —A the n-tuple (—1) A, then

A+ (—4) = 0.

[Instead of writing A + (—B), we shall frequently write 4 — B.]
All these properties are very simple to prove, and we suggest that you
verify them on some examples. We shall give in detail the proof of prop-
erty (3). Let A = (ay,...,a,) and B = (by,...,b,s). Then

A+B: (al—l—bl,...,a,.—}-b,.)
and
¢(A + B) = (clay + by), . .., cla, + b))
= (cal +Cb1y~'-7can+0bn)
= cA + ¢B,

this last step being true by definition of addition of n-tuples.
The other proofs are left as exercises.

Note. Do not confuse the number 0 and the n-tuple (0,...,0). We
usually denote this n-tuple by O, and also call it zero, because no difficulty
can occur in practice.

We shall now interpret addition and multiplication by numbers geo-
metrically in the plane (you can visualize simultaneously what happens

in 3-space). (1,4)
Take an example. Let A = (2,3) and B = T
(—1,1). Then 1 (2,3)
A+ B=(1,4). gx

The figure looks like a parallelogram (Fig. 3). (—1,1) T
Take another example. Let A = (3, 1) and )
B = (1,2). Then n o

A+ B=(4,3). Figure 3
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We see again that the geometric representation of our addition looks like
a parallelogram (Fig. 4).

A+B
B
A
; ' ; ; Figure 4

L 34=(3,6)
0 34
t fa=ap

1 1
T4 =061

S —34

(a) (b) Figure 5

What is the representation of multiplication by a number? Let
A = (1,2) and ¢ = 3. Then c4A = (3, 6) as in Fig. 5(a).

Multiplication by 3 amounts to stretching A by 3. Similarly, 14
amounts to stretching A by %, i.e. shrinking A to half its size. In general,
if ¢ is a number, ¢ > 0, we interpret {A as a point in the same direction
as A from the origin, but ¢ times the distance.

Multiplication by a negative number reverses the direction. Thus
—34 would be represented as in Fig. 5(b).

EXERCISES
Find A + B, A — B, 34, —2B in each of the following cases.
1. A=(2,—1),B = (—1,1) 2. A =(—1,3),B = (0,4
3. 4=(2—1,5),B=(=1,1,1) 4 A= (—1,—23),B=(—1,3, —4)
5. A= (3 —1),B=(2r,—3,7) 6. A = (15,—2,4), B = (m, 3, —1)
7

. Draw the points of Exercises 1 through 4 on a sheet of graph paper.

8. Let 4, B be as in Exercise 1. Draw the points 4 + 2B, A + 3B, A — 2B,
A — 3B, A+ 3B on a sheet of graph paper.



