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PREFACE

This book grew out of course notes used by us to teach two one-semester
courses on probability and random processes at Rensselaer Polytechnic Insti-
tute (RPI). The probability course at RPI is required of all students in the
Computer and Systems Engineering Program and is a highly recommended
elective for many others. Most of the students taking the course are engineer-
ing or science majors in their junior year. Seniors and many first-year gradu-
ate students take the course for credit as well. The emphasis is on introducing
fundamental principles and developing skills to solve problems.

The random processes course is typically taken by first-year graduate
students and is designed to give students the needed background to take more
advanced courses in communications, signal processing, controls, robotics,
large-scale systems, and physics-related phenomena. As can be seen, the ma-
terial goes considerably beyond elementary input-output relations for linear
shift-invariant systems. Our experience has been that the present level of the
course also gives the student the mathematical background in stochastic proc-
esses to pursue M.S.- or Ph.D.-level research in these fields.

In writing this book, we took an ‘“‘integrated” view of probability and
random processes. We felt that probability and random variables were so
closely linked to estimation and decision theory that we made a strong at-
tempt at connecting these subjects. Furthermore, we both shared a strong
feeling that describing sophisticated applications of the theory of probability
and random processes would be, from a pedagological viewpoint, beneficial
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for students. Hence, we have included applications to pattern recognition,
linear systems, parameter estimation, controls, and communication theory.
We also felt that in the age of the computer, the theory of random discrete-
time (space) sequences should be given as much weight as continuous-time
(space) waveforms. For this reason we devoted an entire chapter to this
theory.

In reviewing our own experience, we found that certain closely related
topics were often not covered in first courses because the material was
deemed too advanced and was then not covered in later courses because the
material was considered too basic. Such is often the case with covariance
matrices, maximization of quadratic forms, least-squares estimation, and still
others. Consequently, we included two chapters dealing with these topics.

The normal use of this book would be as follows: For a first course in
probability at, say, the junior or senior year, a reasonable goal is to cover
Chapters 1 through 3 with a little material from Chapter 4. Starred sections
are often not covered. Homework assignments range from five to ten prob-
lems per week. For a first-year graduate course on probability in which the
students have had some prior exposure to the subject, Chapters 1 to 3 could
be covered in much less time, leaving time for covering Chapters 4 and 5. The
material in Chapters 4 and 5 is essential for the statistical-pattern recognition
course at RPI. The Gauss-Markov theorem for estimating unknown parame-
ters from measurements corrupted by noise is discussed at length as is the
problem of finding the best one-dimensional subspace for separating two clas-
ses of statistical objects with well-defined means and covariances.

Chapters 6 through 10 provide the material for a first course in random
processes. Beginning with random sequences (Chapter 6), the remaining
chapters cover, respectively: random processes; mean-square calculus; sta-
tionary processes and sequences; and advanced estimation theory. In general,
there is more material than can be covered in a one-semester course. Unless
the class is very mature mathematically, Kalman and Wiener filtering are
omitted as is Martingale theory upon a first reading.

When course time is reduced as, for example, it might be in schools
using the quarter system, it is important that Chapters 6, 7, and 9 be covered,
essentially in that order, before teaching material from Chapters 8 and 10.
Ideally, it would be preferable to cover Chapter 8 before Chapter 9. But, as
the latter covers the basic input-output relations for linear systems excited by
random signals, we suggest that it be taught out of normal sequence if the
instructor feels there is a danger of running out of time.

We acknowledge a tremendous debt of gratitude to our teachers and
students. Thanks are due to the administration of Rensselaer Polytechnic In-
stitute, which graciously recognized the creation of such a book as a scholarly
activity. The excellent typing skills and cheerful demeanor of Priscilla
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Magilligan were crucial to this effort. One of the authors, Henry Stark, is also
very grateful to Peggy and Mark Curchack for providing a warm and comfort-
able home environment while he worked on the book while on leave at the
University of Pennsylvania.

Finally, a project like this can be completed only with the cooperation of
the authors’ spouses. To Alice and Harriet, we extend our gratitude.

HENRY STARK
JOHN W. WooDs

Troy, New York
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INTRODUCTION
TO PROBABILITY

1.1 INTRODUCTION: WHY STUDY PROBABILITY?

One of the most frequent questions posed by beginning students of proba-
bility is: “Is anything truly random and if so how does one differentiate
between the truly random and that which, because of a lack of information,
is treated as random but really isn’t?” First, regarding the question of truly
random phenomena: “Do such things exist?”” A theologian might state the
case as follows: “We cannot claim to know the Creator’s mind, and we
cannot predict His actions because He operates on a scale too large to be
perceived by man. Hence there are many things we shall never be able to
predict no matter how refined our measurements.”

At the other extreme from the cosmic scale is what happens at the
atomic level. Our friends the physicists speak of such things as the probabil-
ity of an atomic system being in a certain state. The uncertainty principle
says that, try as we might, there is a limit to the accuracy with which the
position and momentum can be simultaneously ascribed to a particle. Both
quantities are fuzzy and indeterminate.

Many, including some of our most famous physicists, believe in an
essential randomness of nature. Eugen Merzbacher in his well-known text-
book on quantum mechanics [1-1] writes:

The probability doctrine of quantum mechanics asserts that the indetermina-
tion, of which we have just given an example, is a property inherent in nature
and not merely a profession of our temporary ignorance from which we expect
to be relieved by a future better and more complete theory. The conventional
interpretation thus denies the possibility of an ideal theory which would
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encompass the present quantum mechanics but would be free of its supposed
defects, the most notorious ‘“‘imperfection” of quantum mechanics being the
abandonment of strict classical determinism.

But the issue of determinism versus inherent indeterminism need never even
be considered when discussing the validity of the probabilistic approach. The
fact remains that there is, quite literally, a nearly uncountable number of
situations where we cannot make any categorical deterministic assertion
regarding a phenomenon because we cannot measure all the contributing
elements. Take, for example, predicting the value of the current i(t) pro-
duced by a thermally excited resistor R: Conceivably, we might accurately
predict i(¢) at some instant ¢ in the future if we could keep track, say, of the
10*® or so excited electrons moving in each other’s magnetic fields and
setting up local field pulses that eventually all contribute to producing i(t).
Such a calculation is quite inconceivable, however, and therefore we use a
probabilistic model rather than Maxwell’s equations to deal with resistor
noise. Similar arguments can be made for predicting weather, the outcome
of a coin toss, the time to failure of a computer, and many other situations.

Thus to conclude: Regardless of which position one takes, that is,
determinism versus indeterminism, we are forced to use probabilistic models
in the real world because we do not know, cannot calculate, or cannot
measure all the forces contributing to an effect. The forces may be too
complicated, too numerous, or too faint.

Probability is a mathematical model to help us study physical systems
in an average sense. Thus we cannot use probability in any meaningful sense
to answer questions such as: “What is the probability that a comet will strike
the earth tomorrow?”” or “What is the probability that there is life on other
planets?”t

R. A. Fisher and R. van Mises, in the first third of the twentieth
century, were largely responsible for developing the groundwork of modern
probability theory. The modern axiomatic treatment upon which this book is
based is largely the result of the work by Andrei N. Kolmogorov [1-2].

1.2 THE DIFFERENT KINDS OF PROBABILITY
There are essentially four kinds of probability. We briefly discuss them here.

A. Probability as Intuition

This kind of probability deals with judgments based on intuition. Thus “She
will probably marry him,” and “He probably drove too fast,”” are in this
category. A mathematical theory dealing with intuitive probability was
developed by B. O. Koopman [1-3]. However, we shall not discuss this
subject in this book.

T Nevertheless, certain evangelists deal with this question rather fearlessly, and even a
popular astronomer has come up with a figure for this probability. However, whatever
probability system these people use, it is not the system that we shall discuss in this book.

2 Introduction to Probability Chap. 1



B. Probability as the Ratio of Favorable to Total

Outcomes (Classical Theory)

In this approach, which is not experimental, the probability of an event is
computed a priorit by counting the number of ways Ng that E can occur
and forming the ratio Ng/N where N is the number of all possible outcomes,
that is, the number of all alternatives to E plus Ng. An important notion
here is that all outcomes are equally likely. Since equally likely is really a
way of saying equally probable, the reasoning is somewhat circular. Suppose
we throw a pair of unbiased dice and ask what is the probability of getting a
seven? We partition the outcome into 36 equally likely outcomes as shown
in Table 1.2-1 where €ach entry is the sum of the numbers on the two dice.

TABLE 1.2-1 Outcomes of Throwing Two Dice

1st die

1 2 3 4 5 6

1 2 3 4 5 6 7

o 2 3 4 5 6 7 8
5 3 4 5 6 7 8 9
T 4 s 6 7 8 9 10
N 3 6 7 8 9 10 11
6 7 8 9 10 11 12

The total number of outcomes is 36 if we keep the dice distinct. The

number of ways of getting a seven is N,=6. Hence

P[getting a seven] = & = ¢&.

Example 1.2-1: Throw a fair coin twice (note that since no physical experimentation
is involved, -there is no problem in postulating an ideal “fair coin”). The possible
outcomes are HH, HT, TH, TT. The probability of getting at least one tail T is
computed as follows: With E denoting the event of getting at least one tail, the event
E is the set of outcomes
E = {HT, TH, TT}.

Thus E occurs whenever the outcome is HT or TH or TT. The number of elements
in E is Ng = 3; the number of all outcomes, N, is four. Hence

N,
Plat least one T] = FE =i

The classical theory suffers from at least two significant problems: (1) It
cannot deal with outcomes that are not equally likely; and (2) it cannot
handle uncountably infinite outcomes without ambiguity (see the example by
Athanasios Papoulis [1-4]). Nevertheless, in those problems where it is
impractical to actually determine the outcome probabilities by experimenta-
tion and where, because of symmetry considerations, one can indeed argue
equally likely outcomes the classical theory is useful.

t A priori means relating to reasoning from self-evident propositions or presupposed by
experience. A posteriori means relating to reasoning from observed facts.

1.2 The Different Kinds of Probability 3



Historically, the classical approach was the predecessor of Richard
Von Mises’ [1-5] relative frequency approach developed in the 1930s.

C. Probability as a Measure of Frequency of
Occurrence
The relative-frequency approach to defining the probability of an event E is
to perform an experiment n times. The number of times that E appears is
denoted by ng. Then it is tempting to define the probability of E occurring
by

P[E] = 1@@%5. (1.2-1)
Quite clearly since ng < n, we must have 0 =< P[E] < 1. One difficulty with
this approach is that we can never perform the experiment an infinite
number of times so that we can only estimate P[E] from a finite number of
trials. Secondly, we postulate that ng/n approaches a limit as n goes to
infinity. But consider flipping a fair coin 1000 times. The likelihood of
getting exactly 500 heads is very small; in fact, if we flipped the coin 10,000
times, the likelihood of getting exactly 5000 heads is even smaller. As
n — oo, the event of observing exactly n/2 heads becomes vanishingly small.
Yet our intuition demands that P[head] = 3 for a fair coin. Suppose we
choose a 8 > 0; then we shall find experimentally that if the coin is truly
fair, the number of times that

g 1

> 8 1.2-2
i ( )

as n becomes large, becomes very small. Thus although it is very unlikely
that at any stage of this experiment, especially when n is large, ng/n is
exactly 3, this ratio will nevertheless hover around 3, and the number of
times it will make significant excursion away from the vicinity of 3 according
to Equation 1.2-2 becomes very small indeed.

Despite these problems with the frequency definition of probability,
the relative-frequency concept is essential in applying the probability theory
to the physical world.

D. Probability Based on an Axiomatic Theory

This is the approach followed in most modern textbooks on the subject. To
develop it we must introduce certain ideas, especially those of a random
experiment, a sample description space, and an event. Briefly stated, a
random experiment is simply an experiment in which the outcomes are
nondeterministic, that is, probabilistic. Hence the word random in random
experiment. The sample description space is the set of all outcomes of the
experiment. An event is a subset of the sample description space that
satisfies certain constraints. In general, however, almost any subset of the
sample description space is an event.

These notions are refined in the next two sections.

4 Introduction to Probability Chap. 1



