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Preface

Our objective in writing this book was to produce a general, introductory textbook
on the subject of combinatorial algorithms. Several textbooks on combinatorial
algorithms were written in the 1970s, and are now out-of-date. More recent books
on algorithms have either been general textbooks, or books on specialized topics,
such as graph algorithms to name one example. We felt that a new textbook
on combinatorial algorithms, that emphasizes the basic techniques of generation,
enumeration and search, would be very timely.

We have both taught courses on this subject, to undergraduate and graduate
students in mathematics and computer science, at Michigan Technological Uni-
versity and the University of Nebraska-Lincoln. We tried to design the book to be
flexible enough to be useful in a wide variety of approaches to the subject.

We have provided a reasonable amount of mathematical background where it
is needed, since an understanding of the algorithms is not possible without an
understanding of the underlying mathematics. We give informal descriptions of
the many algorithms in this book, along with more precise pseudo-code that can
easily be converted to working programs. C implementations of all the algorithms
are available for free downloading from the website

http://www.math.mtu.edu/ kreher/cages.html

There are also many examples in the book to illustrate the workings of the algo-
rithms.

The book is organized into eight chapters. Chapter 1 provides some back-
ground and notation for fundamental concepts that are used throughout the book.
Chapters 2 and 3 are concerned with the generation of elementary combinato-
rial objects such as subsets and permutations, to name two examples. Chapter 4
presents the important combinatorial search technique called backtracking. It in-
cludes a discussion of pruning methods, and the maximum clique problem is stud-
ied in detail. Chapter 5 gives an overview of the relatively new area of heuristic
search algorithms, including hill-climbing, simulated annealing, tabu search and
genetic algorithms. In Chapter 6, we study several basic algorithms for permuta-
tion groups, and how they are applied in solving certain combinatorial enumera-
tion and search problems. Chapter 7 uses techniques from the previous chapter
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to develop algorithms for testing isomorphism of combinatorial objects. Finally,
Chapter 8 discusses the technique of basis reduction, which is an important tech-
nique in solving certain combinatorial search problems.

There is probably more material in this book than can be covered in one
semester. We hope that it is possible to base several different types of courses
on this book. An introductory course suitable for undergraduate students could
cover most of the material in Chapters 1-5. A second or graduate course could
concentrate on the more advanced material in Chapters 6-8. We hope that, aside
from its primary purpose as a textbook, researchers and practitioners in all areas
of combinatorial computing will find this book useful as a source of algorithms
for practical use.

We would like to thank the many people who provided encouragement while
we wrote this book, pointed out typos and errors, and gave us useful suggestions
on material to include and how various topics should be treated. In particular,
we would like to convey our thanks to Mark Chateauneuf, Charlie Colbourn, Bill
Kocay, Frangois Margot, Wendy Myrvold, David Olson, Partic Ostergérd, Jamie
Radcliffe, Stanistaw Radziszowski and Mimi Williams.

Donald L. Kreher
Douglas R. Stinson



To our wives, Carol and Janet.
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1

Structures and Algorithms

1.1 What are combinatorial algorithms?

In this book, we are primarily interested in the study of algorithms to investigate
combinatorial structures. We will call such algorithms combinatorial algorithms,
and informally classify them according to their desired purpose, as follows.

generation Construct all the combinatorial structures of a particular type.

Examples of the combinatorial structures we might wish to generate include
subsets, permutations, partitions, trees and Catalan families. A generation
algorithm will list all the objects under consideration in a certain order, such
as a lexicographic order. It may be desirable to predetermine the position of
a given object in the generated list without generating the whole list. This
leads to the discussion of ranking, which is studied in Chapters 2 and 3.
The inverse operation of ranking is unranking and is also studied in these
two chapters.

enumeration Compute the number of different structures of a particular type.
Every generation algorithm is also an enumeration algorithm, since each
object can be counted as it is generated. The converse is not true, however.
It is often easier to enumerate the number of combinatorial structures of a
particular type than it is to actually list them. For example, the number of
k-subsets of an n-element set is

() = o

which is easily computed. On the other hand, listing all of the k-subsets is
more difficult.

There are many situations when two objects are different representations of
the “same” structure. This is formalized in the idea of isomorphism of struc-
tures. For example, if we permute the names of the vertices of a graph, the
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resulting two graphs are isomorphic. Enumeration of the number of non-
isomorphic structures of a given type often involves algorithms for isomor-
phism testing, which is the main topic studied in Chapter 7. Algorithms for
testing isomorphism depend on various group-theoretic algorithms, which
are studied in Chapter 6.

search Find at least one example of a structure of a particular type (if it exists).
A typical example of a search problem is to find a clique of a specified size
in a given graph. Generating algorithms can sometimes be used to search
for a particular structure, but for many problems, this may not be an efficient
approach. Often, it is easier to find one example of a structure than it is to
enumerate or generate all the structures of a specified type.

A variation of a search problem is an optimization problem, where we want
to find the optimal structure of a given type. Optimality will be defined
for a particular structure according to some specified measure of “profit”
or “cost”. For example, the maximum clique problem requires finding a
clique of largest size in a given graph. (The size of a clique is the number
of vertices it contains.)

Many interesting and important search and optimization problems belong
to the class of NP-hard problems, for which no efficient (i.e., polynomial-
time) algorithms are known to exist. The maximum clique problem men-
tioned above falls into this class of problems. For NP-hard problems, we
will often use algorithms based on the idea of backtracking, which is the
topic of Chapter 4. An alternative approach is to try various types of heuris-
tic algorithms. This topic is discussed in Chapters 5 and 8.

1.2 What are combinatorial structures?

The structures we study in this book are those that can be described as collections
of k-element subsets, k-tuples, or permutations from a parent set. Given such a
structure, we may be interested in all of the substructures contained within it of a
particular or optimal type. On the other hand, we may wish to study all structures
of a given form. We introduce some of the types of combinatorial structures in
this section that will be used in later parts of the book.

1.2.1 Sets and lists

The basic building blocks of combinatorial structures are finite sets and lists. We
review some basic terminology and notation now.

A (finite) set is a finite collection of objects called the elements of the set. We
write the elements of a set in brace brackets. For example, if we write X =
{1,3,7,9}, then we mean that X is a set that contains the elements 1,3,7 and 9.
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A set is an unordered structure, so {1,3,7,9} = {7,1,9, 3}, for example. Also,
the elements of a set are distinct. We write x € X to indicate that z is an element
of the set X.

The cardinality (or size) of a set X, denoted | X|, is the number of elements in
X . For example, |{1,3,7,9}| = 4. For a nonnegative integer k, a k-set is a set of
cardinality k. The empty set is the (unique) set that contains no elements. Itis a
0-set and is denoted by §.

If X and Y are sets, then we say that X is a subset of Y if every element of X
is an element of Y. This is equivalent to the following condition:

re€EX=>zeY.

If X is a subset of Y, then we write X C Y. A k-subset of Y is a subset of Y’
that has cardinality k.

A (finite) list is an ordered collection of objects which are called the items of the
list. We write the items of a list in order between square brackets. For example,
if we write X = [1,3,1,9], then we mean that X is the list that contains the
items 1,3, 1 and 9 in that order. Since a set is an ordered structure, it follows that
[1,3,1,9] # [1,1,9,3], for example. Note that the items of a list need not be
distinct.

The length of alist X is the number of items (not necessarily distinct) in X . For
example, [1,3,1,9] is a list of length 4. For a nonnegative integer n, an n-tuple
is a list of length n. The empty list is the (unique) list that contains no elements;
it is written as [ ]. If X is a list of length n, then the items in X are denoted
X1[0], X[1],...,X[n — 1], in order. We usually denote the first item in the list X
as X 0], as is done in the C programming language. Thus, if X = [1, 3, 1, 9], then
X[0] =1, X[1] = 3, X[2] = 1 and X [3] = 9. However, in some situations, we
may list the elements of X as X[1], X[2],..., X[n]. An alternative notation for a
list, that we will sometimes use, is to write the items in the list X in subscripted
form, as Xo, X1,..., Xn-1.

The Cartesian product (or cross product) of the sets X and Y, denoted by
X x Y, is the set of all ordered pairs whose first item is in X and whose second
item is in Y. Thus

XxY={[z,y:z€Xandy € Y}.
For example, if X = {1,3,7,9} and Y = {0, 2,4}, then
{1,3,7,9} x {0,2} = {[1,0],[1,2],[3,0],[3,2],(7,0],[7,2],[9,0],[9, 2]}

If X is a finite set of cardinality n, then a permutation of X is a list 7 of length
n such that every element of X occurs exactly once in the list 7. There are exactly
n! = n(n — 1) --- 1 permutations of an n-set. For a positive integer k < n, a k-
permutation of X is a list w of length k such that every element of X occurs at
most once in the list 7. There are exactly

n!

m:n(n—l)---(n—kle)
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k-permutations of an n-set.

1.2.2 Graphs
We begin by defining the concept of a graph.

Definition 1.1: A graph consists of a finite set V of vertices and a finite
set £ of edges, such that each edge is a two element subset of vertices. It is
customary to write a graph as an ordered pair, (V, £).

A complete graph is a graph in which £ consists of all two element subsets of
V. If |V| = n, then the complete graph is denoted by K,.

We will usually represent the vertices of a graph (V, £) by dots, and join two
vertices = and y by a line whenever {z,y} € £. A vertex z is incident with an
edge e if z € e. The degree of a vertex z € V, denoted by deg(z), is the number
of edges that are incident with the vertex . A graph is regular of degree d if
every vertex has degree d. In Example 1.1 we present a graph that is regular of
degree three.

Example 1.1 A graph
LetV = {0,1,2,3,4,5,6,7},and let £ = {{0,1}, {0,2}, {2,3}, {1,3}, {0,4},
{1,5},{2,6}, {3,7}, {4,5}, {4,6}, {6, 7}, {5, 7} }. This graph is called the cube

and can be represented by the diagram in Figure 1.1. I
0 2
N
4 6
5 7
/N
1 3
FIGURE 1.1

The cube and a Hamiltonian circuit.

One of the many interesting substructures that can occur in a graph is a Hamil-
tonian circuit. This is a closed path that passes through every vertex exactly once.
The list [0,2,3,7,6,4,5, 1] describes a Hamiltonian circuit in the graph in Fig-
ure 1.1. It is indicated by thick lines in the diagram. Note that different lists can
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represent the same Hamiltonian circuit. In fact, there are 2n such lists, where n is
the number of vertices in the graph, since we can pick any of the n vertices as the
“starting point” and then traverse the circuit in two possible directions.

A graph (V, £) is a weighted graph if there is a weight functionw : £ — R
associated with it. The weight of a substructure, such as a Hamiltonian circuit,
is defined to be the sum of the weights of its edges. Finding a smallest weight
Hamiltonian circuit in a weighted graph is called the Traveling Salesman prob-
lem and is discussed in Chapter 4.

Another example of a substructure in a graph is a clique. A cligue in a graph
G = (V,€) is asubset S C V such that {z,y} € £ forallz,y € S,z # y.
A clique that has the maximum size among all cliques of G is called a maximum
clique. In Figure 1.1, every edge {z,y} determines a maximum clique of the
graph, since there are no cliques of size 3. Finding a maximum clique in a graph
is called the Maximum Clique problem and is discussed in Chapter 4.

1.2.3 Set systems

We next define a generalization of a graph called a set system.

Definition 1.2: A set system consists of a finite set X’ of points and a finite
set B of blocks, such that each block is a subset of X. We use the notation
(X, B) to denote a set system.

Observe that a graph is just a set system in which every block has cardinality
two. Another simple example of a set system is a partition of a set X. A partition
is a set system (X, B) in which AN B = @ forall A,B € B with A # B, and
UaegA = X.

We now define another, more complicated, combinatorial structure, and then
formulate it as a special type of set system.

Definition 1.3: A Latin square of order n is an n by n array A, whose
entries are chosen from an n-element set ), such that each symbol in ) occurs
in exactly one cell in each row and in each column of A.

Example 1.2 A Latin square of order four
LetyY = {1,2,3,4} and let

112(34
21114|3
A—3412
41321
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Suppose that A is a Latin square of order n on a symbol set ). Label the n
rows of A with the n elements of ), and likewise label the n columns of A with
the n elements of ). Now define a set system (X, B) as follows:

X =Yx{1,2,3},

and
B = {{(y1,1),(y2,2), (Aly1,92],3)} : y1,y2 € V}.

If we start with the Latin square of order four that was presented in Example
1.2, then we obtain the following set system (X, B):

X ={1,2,3,4} x {1,2,3}

({[1,1],01,2],[1,3]}, {[1,1],[2,2],[2,3]},)
{[1,1,[3,2],(3,3]}, {[1,1], 4, 2], 4, 3]},
{[2,1],1,2],[2,3]}, {[2,1],2,2], [1, 3]},

g = {[2.1],03,2],[4,3]}, {[2,1],[4,2], [3, 3]},
{[3,1],[1,2],[3,3]}, {[3, 1], [2, 2], [4, 3]},
{[3,1],[3,2], [1, 3]}, {[3, 1], [4,2], [2,3]},
{[4,1],[1,2],[4,3]}, {[4,1],[2,2],[3,3]},

({[4,1),13,2],(2, 3]}, {[4,1], (4, 2], [1, 3]}

If we look at the blocks in this set system we see that every pair of the form
{(y1,%), (y2,7)}, where i # j, occurs in exactly one block in B. This motivates
the following definition.

Definition 1.4: A transversal design TD(n) is a set system (X, B) for
which there exists a partition { X}, X3, X3} of X such that the following prop-
erties are satisfied:

1. |X|=3n,and |X;| =nfor1 <3 <3,

2. Forevery Be Bandfor1<i<3,|BN&;|=1.

3. For every x € &; and every y € X with ¢ # j, there exists a unique
block B € B such that {z,y} C B.

If we chose the partition { X7, X5, X3} of X = {1,2,3,4} x {1, 2,3} so that
A ={[1,1],(2,1},[3,1], [4, 1]}
X ={[1,2],[2,2],[3,2], [4,2]},
and
A3 = {[1,3],12,3], 3, 3], [4, 3]},

then it is easy to check that the set system that we constructed above from the
Latin square of order four is a TD(4). In general, we can construct a TD(n)
from a Latin square of order n, and vice versa.



