Fundamentals and frontiers




Rock Magnetism

Fundamentals and frontiers

David J. Dunlop
Geophysics, Department of Physics, University of Toronto

Ozden Ozdemir
Geophysics, Department of Physics, University of Toronto

CAMBRIDGE

UNIVERSITY PRESS




PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS

The Edinburgh Building, Cambridge ¢B2 2ru, UK

40 West 20th Street, New York, Ny 10011-4211, USA

10 Stamford Road, Oakleigh, VIC 3166, Australia

Ruiz de Alarcon 13, 28014 Madrid, Spain

Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org
(: Cambridge University Press, 1997

This book is in copyright. Subject to statutory exception

and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without

the written permission of Cambridge University Press

First published 1997
First paperback edition, with corrections 2001

Printed in the United Kingdom at the University Press, Cambridge
Typeset in Times 10}/ 134 pt

A catalogue record for this book is available from the British Library
Library of Congress Cataloguing in Publication data

Dunlop, David J.
Rock magnetism: fundamentals and frontiers / by David J. Dunlop
and Ozden Ozdemir.
p. cm. - (Cambridge studies in magnetism)
ISBN O 521 32514 5 (he)
1. Rocks — Magnetic properties. 1. Ozdemir, Ozden, 1946-
11. Title. I11. Series.
QE431.6.M3D86 1997
552".06-dc20  96-31562 cip

ISBN 0 521 32514 5 hardback
ISBN 0 521 00098 X paperback



To those who have gone before us, the pioneers of rock
magnetism, and to our students and colleagues, from whom
we have learned so much.



The magnetic compass was one of mankind’s first high-technology devices. Pos-
session of the compass gave the Islamic world an early edge in navigation and
led to the rapid eastward spread, by sea, of their trade, religion and civilization.
But man was a comparative latecomer in magnetically aided navigation. Birds,
fish, insects, and even bacteria had evolved efficient compasses millions of years
earlier.

Magnetic memory, whether of a compass needle, a lava flow, or a computer
diskette, is a remarkable physical phenomenon. The magnetic moment is perma-
nent. It requires no expenditure of energy to sustain. Yet it can be partly or com-
pletely overprinted with a new signal. Nowhere is this more strikingly
demonstrated than in rocks. A single hand sample can record generations of
past magnetic events. This family tree can be decoded in the laboratory by strip-
ping away successive layers of the magnetic signal.

Paleomagnetism is the science of reading and interpreting the magnetic signal
of rocks. Rock magnetism is more concerned with the writing or recording pro-
cess. The principles are no different from those of fine-particle magnetism as
applied in permanent magnet and magnetic recording technology. But the physi-
cal parameters are rather different. Weak magnetic fields are involved, on the
order of the present geomagnetic field (0.3-0.6 G or 30-60 pT), much less than
the switching fields of the magnetic particles. Temperatures may be high: thermo-
remanent magnetization of igneous rocks is acquired during cooling from the
melt. Times are long, typically millions of years.

Rock magnetism and paleomagnetism trace their origins to the mid-
nineteenth century, but they really came into prominence in the 1950’s and
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1960’s because of two daring questions that shook and ultimately revolutionized
earth science: Does the earth’s magnetic field reverse itself? And do the conti-
nents drift? Because rocks record in their magnetizations the polarity and direc-
tion of past geomagnetic fields, paleomagnetism was able to answer both
questions.

Rocks of the same age from around the globe always recorded the same geo-
magnetic polarity. Their ancient compasses pointed north (normal polarity) dur-
ing certain time intervals and south at other times. Most strikingly, strips of
seafloor on either side of mid-ocean ridges (the birthplace of new seafloor) were
unmistakably striped magnetically: either normal or reverse in response to the
prevailing geomagnetic polarity as they formed. The earth’s field does indeed
reverse.

The same internal compasses showed that continents or subcontinents (now
recognized as sections of lithospheric plates, containing ocean floor as well as
continent) had rotated away from present-day north and had changed latitude
during geological history. But prior to 175 Ma ago, their compass bearings coin-
cided. They were originally assembled in a single supercontinent.

These findings shook earth science to its foundations and led to its rebuilding
around a new guiding principle, plate tectonics. The revolution was not quite as
straightforward as we have implied. The multiple generations of magnetization
in rocks clouded the issue until methods were developed to strip away all but the
most ancient. The stability of this ancestral magnetization came under scrutiny.
It seemed to many inconceivable that rocks could preserve an unchanging mag-
netic memory for 175 Ma when the best products of human technology could be
rather easily remagnetized by extraneous fields or stresses.

Such is the exciting history of rock magnetism. In this book, we will show how
rocks manage to achieve a fidelity of magnetic memory that is beyond human
experience. After developing the principles of ferromagnetism in Chapters 1-5,
we will see in Chapter 6 how ferromagnetic domains appear under the micro-
scope and in Chapter 7 what new micromagnetic structures are currently being
predicted in grains too small to observe optically. Chapters 8, 9 and 10 reveal
how the joint influences of temperature or time and magnetic fields permit the
writing of a magnetic signal that cannot be erased by subsequent geomagnetic
field changes. These are the fundamentals.

Chapters 11, 12 and 13 deal with some of the frontiers in understanding rock
magnetic recording. As well as developing laboratory parameters and techniques
that can predict stability on geological time scales (Chapter 11), we will look at
how rather large particles can achieve stable memory that rivals that of submi-
croscopic particles (the pseudo-single-domain effect: Chapter 12) and how che-
mical changes in minerals degrade or enhance magnetic memory (Chapter 13).

Paleomagnetists sometimes complain that the ‘rock’ is frequently left out of
‘rock magnetism’. Rock magnetic research looks too much like magnetic materi-
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als research. We have tried to answer that criticism in Chapters 14-17 by looking
at magnetic minerals and their magnetic signals in the real world of igneous, sedi-
mentary, metamorphic, and extraterrestrial rocks. This is a whole subject in itself
and no one person can claim to be expert in all aspects, the present authors
included. We have tried to convey the flavour of current thinking and research,
rather than serving up an overwhelming banquet.

What background do you need to appreciate this book? A grounding in elec-
tricity and magnetism at junior undergraduate level is a help. Those with more
geological background may wish to skip over the mathematical details. The key
results can stand without them, and we have tried to maintain the story line unin-
terrupted wherever possible. Similarly a knowledge of basic earth science is help-
ful, but those with a physical science or engineering background should not turn
away because they can’t tell a hyperbyssal rock from a descending plate. This
knowledge too is usually peripheral to the main message of the book.

We enjoyed writing this book and hope you will enjoy reading it. It would cer-
tainly never have been completed without a lot of help from our friends. We
would especially like to mention those who taught us and passed on so much of
their knowledge: Subir Banerjee, Ken Creer, Zdenek Hauptmann, Ted Irving,
Takesi Nagata, Bill O’Reilly, Minoru and Mituko Ozima, Frank Stacey, David
Strangway, Emile Thellier and Gordon West. With our colleagues Susan
Halgedahl, Ron Merrill, Bruce Moskowitz, Michel Prévot, Valera Shcherbakov,
Wyn Williams and Song Xu, we have passed countless hours of pleasurable dis-
cussion. Among our former students, we want to mention in particular Ken
Buchan, Randy Enkin, Franz Heider and Andrew Newell; their work has had a
central influence on the ideas in the book. Sherman Grommeé, Ted Irving, Ed Lar-
son, Michel Prévot and Naoji Sugiura kindly read and commented on early ver-
sions of some of the chapters.

We are grateful to Jennifer Wiszniewski, Carolyn Moon and Li Guo for
patiently shepherding the manuscript through its many incarnations. Thanks to
Khader Khan and Raul Cunha, different generations of figures were skillfully
drawn and transformed through successive changes in technology. The photo-
graphy was done with dedication and skill by Alison Dias, Steve Jaunzems and
Judith Kostilek. Unlike some authors’ families, ours did not eagerly await the
appearance of each new chapter, but they did heave a collective sigh of relief
when the last page was written and life returned to normal.

Mississauga, Canada
April 1996
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