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Preface

During the period from July 13 to July 31, 2009, East China Normal University
hosted the second workshop and summer school on Lie Theory and Representation
Theory. This volume contains the lecture notes of three courses in that summer
school, together with the lecture notes of one course given in the first summer
school which was held in 2006.

This volume consists of articles by Shun-Jen Cheng and Weigiang Wang,
Rolf Farnsteiner, Daniel K. Nakano, and Toshiyuki Tanisaki. These articles focus
on different areas in Lie theory and representation theory. The article jointly
by Cheng and Wang introduces some recent developments of representations of
Lie superalgebras, explaining how Lie superalgebras of types gl and osp provide
a natural framework for generalized Schur and Howe dualities, and how a super
duality gives a conceptual solution to the irreducible character problem for these
Lie superalgebras in terms of the classical Kazhdan-Lusztig polynomials.

Farnsteiner’s article discusses combinatorial and geometric aspects of repre-
sentation theory of finite group schemes, and focuses on the “classical” theory
of co-commutative Hopf algebras, the defining algebras of affine algebraic group
schemes.

Nakano’s article gives a survey of recent developments in the representation
theory and cohomology theory of reductive algebraic groups, their Frobenius ker-
nels and their associated finite groups of Lie type.

Tanisaki’s article presents an overview of the theory of D-modules and its
application to representations of Lie algebras.

This volume is well suited for graduate students in the fields of Lie theory
and representation theory and related topics, and also for researchers who wish to
learn about some current core areas in Lie theory and representation theory and
their applications.

At last, we sincerely express our thanks to the Department of Mathematics,
the International Exchange Division and the Graduate School of East China Nor-
mal University for their financial support to the summer schools and workshops in
2006 and 2009. We are grateful to National Natural Science Foundation of China
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for financial support (Grant:10926022) in 2009. Our deep appreciation also goes
to our colleagues Pei Gu, Youyi Wu and Hongyan Zhang for their assistance in

organizing these activities.

Jianpan Wang
Bin Shu
Naihong Hu

In Shanghai

31 October, 2010
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Dualities for Lie Superalgebras

Shun-Jen Cheng* and Weigiang Wang!

Abstract

We explain how Lie superalgebras of types gl and osp provide a natural framework
generalizing the classical Schur and Howe dualities. This exposition includes a
discussion of super duality, which connects the parabolic categories O between
classical Lie superalgebras and Lie algebras. Super duality provides a conceptual
solution to the irreducible character problem for these Lie superalgebras in terms
of the classical Kazhdan-Lusztig polynomials.

2000 Mathematics Subject Classification: 17B10.

Keywords and Phrases: Lie superalgebras, Schur duality, Howe duality, super
duality, irreducible characters.

0 Introduction

The study of Lie superalgebras, supergroups, and their representations was largely
motivated by supersymmetry in mathematical physics, which puts bosons and
fermions on the same footing. An earlier achievement is the Cartan-Killing type
classification of finite-dimensional simple complex Lie superalgebras by Kac [K1]
(also cf. [SNR] for an independent classification of the so-called classical Lie super-
algebras). The most important basic classical Lie superalgebras consist of infinite
series of types sl,0sp. The basic classical Lie superalgebras afford root systems,
Dynkin diagrams, Cartan subalgebras, triangular decomposition, Verma modules,
category O, and so on. There has been much work on representation theory of
Lie superalgebras (in particular, basic classical) in the last three decades, but
conceptual approaches have been lacking until recently.

The aim of these lecture notes is to explain three different kinds of dualities
for Lie superalgebras:

Schur duality, Howe duality, and Super duality.

*Institute of Mathematics, Academia Sinica, Taipei, E-mail: chengsj@math.sinica.edu.tw
TDepartment of Mathematics, University of Virginia, Charlottesville, VA 22904. E-mail:
ww9c@virginia.edu
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In the superalgebra setting, the first (i.e. Schur) duality was formulated by Sergeev,
and the latter two dualities have been largely developed by the authors and their
collaborators. These lecture notes are also intended to serve as a road map for a
forthcoming book by the authors.

The Schur-Sergeev duality is an interplay between Lie superalgebras and the
symmetric groups which incorporates the trivial and sign modules in a unified
framework. On the algebraic combinatorial level, there is a natural super general-
ization of the notion of semistandard tableaux which is a hybrid of the traditional
version and its conjugate counterpart.

It has been observed that much of the study of the classical invariant the-
ory on polynomial algebras has parallels for exterior algebras, and both admit
reformulation and extension in the theory of Howe’s reductive dual pairs. Lie
superalgebras allow a uniform treatment of Howe duality on the polynomial and
exterior algebras.

Super duality has a different flavor. It views representation theories of Lie su-
peralgebras and Lie algebras as two sides of the same coin, and it is an unexpected
yet powerful approach developed in the past few years which allow us to overcome
various superalgebra difficulties. We give an exposition on the new development
on super duality which is an equivalence between parabolic categories O of Lie
superalgebras and Lie algebras. Super duality provides a conceptual solution to
the long-standing irreducible character problem for a wide class of modules over
(a wide class of) Lie superalgebras in terms of Kazhdan-Lusztig polynomials. This
is achieved despite the fact that there are no obvious Weyl groups controlling the
linkage for super representation theory.

In Section 1, we give some basic constructions and structures of the general
linear and the ortho-symplectic Lie superalgebras. We emphasize the super phe-
nomena that are not observed in the ordinary Lie algebra setting, such as odd
roots, non-conjugate Borel subalgebras, and so on. In Section 2, we present Kac’s
classification of finite-dimensional simple g-modules [K2]. The classification is very
easy for type A, but nontrivial for osp. In the latter case we explain a new odd
reflection approach by Shu and the second author [SW], using a more natural la-
beling of these modules by hook partitions. We note that odd reflection is also one
of the main technical tools in super duality. In addition, we present the typical
finite-dimensional irreducible character formula, following [K2].

The classical Schur duality relates the representation theory of the general
linear Lie algebras and that of the symmetric groups. In Section 3, we explain
Sergeev’s generalization [Sv1] of Schur duality for the general linear Lie superal-
gebras gl(m|n) (also see Berele and Regev [BeR] for additional insight and de-
tail). More precisely, we establish a double centralizer theorem for the actions of
gl(m|n) and the symmetric group &, in d letters on the tensor space (C™™)®4. We
then provide an explicit multiplicity-free decomposition of the tensor space into a
U(gl(m|n)) ® C&4-modules. We further present a simple formula obtained in our
latest work with Lam [CLW] for extremal weights in a simple polynomial gl(m|n)-
module with respect to all Borel subalgebras, which has an explicit diagramatic
interpretation from a Young diagram.

Howe’s theory of reductive dual pairs [H1, H2] can be viewed as a represen-
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tation theoretic reformulation and extension of the classical invariant theory (see
Weyl [We]). For example, the first fundamental theorem on invariants for classical
groups are reformulated in terms of double centralizer properties of two classical
Lie groups/algebras. One advantage of Howe duality is that it allows natural gen-
eralizations to classical Lie groups/algebras (and superalgebras) other than type
A.

We mainly use two examples of dual pairs to illustrate the main ideas of
Howe duality and the new phenomena of superalgebra generalizations. For more
detailed case study of Howe duality for Lie superalgebras, we refer to the original
papers [BPT, CW1, CW2, CW3, CL1, CLZ, CZ2, CKW, LZ, Sv2]. In Section 4, we
formulate the (gl(m|n), gl(d))-Howe duality and find the highest weight vectors for
each isotypical component in the corresponding multiplicity-free decomposition. In
Section 5 we present the (Sp(d), osp(2m|2n))-Howe duality and its multiplicity-free
decomposition. The application of Howe duality to irreducible characters over Lie
superalgebras follows the simpler approach in our work with Kwon [CKW] (which
uses Howe duality for infinite-dimensional Lie algebras [Wal).

We recall some truly super phenomena that have been the main obstacles
towards a better understanding of super representation theory:

1. There exist odd roots as well as non-conjugate Borel subalgebras for a Lie
superalgebra. A homomorphism between Verma modules may not be injec-
tive.

2. The linkage in category O of modules for a Lie superalgebra is NOT con-
trolled by the Weyl group of gg; see e.g. gl(1|1).

3. There is no uniform Weyl-type irreducible finite-dimensional character for-
mula for Lie superalgebras.

4. The super geometry behind super representation theory is still inadequately
developed.

In light of these super phenomena, it was a rather unexpected discovery
[CWZ, CW4], which was partly inspired by Brundan [Brl], that there exists a
(conjectural) equivalence of categories between Lie algebras and Lie superalgebras
of type A (at a certain suitable limit at infinity), which was termed Super Du-
ality. This conjecture in the full generality of [CW4] has been proved in [CL2],
which in particular offers an elementary and conceptual solution to the character
problem for all finite-dimensional simple modules and for a large class of infinite-
dimensional simple highest weight modules over Lie superalgebras of type A.

Super duality has been subsequently formulated and established between
various Lie superalgebras of type osp and the corresponding classical Lie algebras
in our very recent work with Lam [CLW]. This in particular offers a conceptual
solution of the irreducible character problem for a wide class of modules, which
include all finite-dimensional irreducibles, of Lie superalgebras of type osp in terms
of Kazhdan-Lusztig polynomials for classical Lie algebras [KL, BB, BK] (for more
on Kazhdan-Lusztig theory see Tanisaki’s lectures [Ta]). In addition, it follows
easily from the approach of [CL2, CLW] that the u-homology groups (or Kazhdan-
Lusztig polynomials in the sense of Vogan [Vo]) match perfectly between classical
Lie superalgebras and the corresponding classical Lie algebras. This generalizes
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earlier partial results in this direction from Schur or Howe duality approach [CZ1,
CK, CKW]. The super duality as outlined above is explained in Section 6.

Let us put the super duality work explained above in perspective. Finite-
dimensional irreducible characters for gl(m|n) have been also obtained earlier in
two totally different approaches by [Sva] and [Brl]. The mixed algebraic and ge-
ometric approach of Serganova has been extended very recently in [GS] to obtain
all irreducible finite-dimensional osp-characters. Brundan and Stroppel [BrS] also
provided another approach to the main results of [Brl] and independently proved
a special case of the super duality conjecture in type A as formulated in [CWZ].
All these approaches have brought new and different insights into super repre-
sentation theory. Our super duality approach has the advantages of explaining
the connection with classical Lie algebras and their Kazhdan-Lusztig polynomi-
als, covering infinite-dimensional irreducible characters, and being extendable to
general Kac-Moody Lie superalgebras.

A list of symbols is added at the end of the paper to facilitate the reading.

Let us end the Introduction with some remarks on the interrelations among
the three dualities.

The (gl(d), gl(n))-Howe duality is equivalent to Schur duality. It follows from
the Schur-Sergeev duality that the characters for irreducible polynomial gl(m|n)-
modules are given by the so-called hook Schur functions. On the other hand, the
irreducible character formulas for Lie superalgebras of types gl or osp obtained
from Howe duality can be expressed in terms of infinite classical Weyl groups. The
appearance of hook Schur functions and infinite Weyl groups in these formulas are
conceptually explained from the viewpoint of super duality.

Super duality can be informally interpreted as a categorification of the stan-
dard involution on the ring of symmetric functions. It is well known that the ring
of symmetric functions in infinitely many variables admits symmetries which are
not observed in finitely many variables. Super duality is formulated precisely at
the infinite rank limit. On the level of combinatorial parameterizations of high-
est weights, super duality manifests itself through (variation of) the conjugate of
partitions.

Partly due to the time constraint of the lectures, we have left out many in-
teresting topics on super representation theory. We refer to [BL, J] (and more
recently [SZ]) for finite-dimensional irreducible characters of atypicality one, to
[BKN, DS, Ma, Mu, Pe, PS] for geometric approaches, to [Br2, CWZ2] for further
development of the Fock space approach of Brundan for the queer Lie superal-
gebra q(n) and for osp(2|2n), to [CK, CKW, CZ1, Ger, San, Sva, Zou| for some
cohomological aspects, to [BrK, SW, WZ]| for prime characteristic, to [JHKT, Su]
for related combinatorial structures; also see [Gor, KW, Naz| for additional work
on Lie superalgebras.

Acknowledgment. This paper is a modified and expanded written account
of the 8 lectures given by the second author at the summer school of East China
Normal University (ECNU), Shanghai, July 2009. We are grateful to Ngau Lam
for his collaboration and insight. We thank Bin Shu at ECNU for hospitality and
an enjoyable summer school.
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1 Lie superalgebra ABC

A vector superspace V is understood as a Zs-graded vector space V = V5 & V4.
An element a € V; has parity |a| = ¢, and an element in Vj (respectively, V) is
called even (respectively, odd).

Definition 1.1. A Lie superalgebra is a vector superspace g = gg @ g1 equipped
with a bilinear bracket operation [.,.| satisfying [gi, g;] C @i+, ,J € Z2, and the
following two axioms: for Zs-homogeneous a, b, c € g,

(1) (Skew-supersymmetry) [a,b] = —(—1)!eI'®l[b, a].
(2) (Super Jacobi identity) [a, [b, c]] = [[a, b], ¢] + (—1)!e®l[b, [a, c]].

Remark 1.2. (1) For a Lie superalgebra g = g5 @ g1, g5 is a Lie algebra and g7
is a gg-module under the adjoint action.

(2) (Sign Rule) As explained in Manin’s book [Ma], there is a general heuristic
sign rule for superalgebras as follows. If in some formula for usual algebra
there are monomials with interchanged terms, then in the corresponding for-
mula for superalgebra every interchange of neighboring terms, say a and b, is
accompanied by the multiplication of the monomials by the factor (—1)lel'1¥l,
This is already manifest in the definition of Lie superalgebra and will persist
throughout the paper.

Example 1.3. (1) Let A = Ay ® A7 be an associative superalgebra (i.e. Zs-
graded). Then (A4,[.,.]) is a Lie superalgebra, where for homogeneous ele-
ments a,b € A, we define

[a,b] = ab— (—1)lalblpg,

(2) A Lie superalgebra g with g7 = 0 is just a usual Lie algebra. A Lie superal-
gebra g with purely odd part (i.e. gg = 0) has to be abelian, i.e. [g,g] = 0.

1.1 Lie superalgebras of type A and the supertrace

Let V = V5 @ Vi be a vector superspace. Then End(V) is naturally an associative
superalgebra. The Lie superalgebra gl(V') := (End(V), [.,.]) from Example 1.3 (1)
is called a general linear Lie superalgebra. If V5 = C™ and V; = C", we denote V
by C™™, and gl(V) by gl(m|n). Note that both gl(m|0) = gl(0|m) are isomorphic
to the usual Lie algebra gl(m).

The Lie superalgebra gl(m|n) consists of block matrices of size m|n:

g = (‘; Z). (1.1)

Throughout the paper, we choose to parameterize the rows and columns of the
matrices by the set

I(min) ={1,...,m;1,...,n}
with a total order

I<---<m<0<l<---<n (1.2)
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(where 0 is inserted for later convenience). Its even subalgebra consists of matrices

of the form
a 0
0 d

and is isomorphic to gl(m) @ gl(n).
Example 1.4. For g = gl(1]1), let

0 1 0 0 10 0 0
(o) =G0 m-a) n-(0)

Then
le, f] = h1 + hg (the identity matrix).

The supertrace, denoted by str, of (1.1) is defined to be
str(g) = tr(a) — tr(d).
The special linear Lie superalgebra is
sl(m|n) = {z € gl(m|n) | str(z) = 0}.

The definitions of supertrace and of the Lie superalgebra sl are justified by the
following.

Exercise 1.5. Show that sl(m|n) = [gl(m|n), gl(m|n)] and in particular sl(m|n)
is a Lie subalgebra of gl(m|n).

The notion of simple Lie superalgebras is defined in the same way as for Lie
algebras. We note that sl(n|n) is not a simple Lie superalgebra, as it contains a
nontrivial center Cls,,.

1.2 The bilinear form

Let b denote the Cartan subalgebra of gl(m|n) consisting of all diagonal matrices.
Note that § is an even subalgebra of gl(m|n).

Let E;j, for i,5 € I(m|n), denote the standard basis for gl(m|n). We define
a bilinear form (-,-) on g by letting

(a,b) = str(ab), a,b€g.
This restricts to a nondegenerate symmetric bilinear form on b: for i, 5 € I(m|n),
1 ifI<i=j<m,
(Eii,Ejj): —1 1f1§z=]§n,
0 ifz#j.
Denote by {d;,¢€;}:,; the basis of h* dual to {E;3;, Ejj;}i,;, where 1 < i < m and

1 < j < n. Under the bilinear form (-,-), we have the identification d; = (E;3,-)
and €; = —(Ej;,-). Whenever it is convenient we also use the notation

g:=10;, forl<i<m. (1.3)
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The form (+,-) on h induces a non-degenerate bilinear from on h*, which will
be denoted by the same notation, as follows: for i,j € I(m|n),
1 ifI<i=j<m,
(Ei,Ej)Z -1 if 1 S'L:]STL, (14)
0 ifi#j.

1.3 The root system

For the Lie superalgebra gl(m|n), we define the root space decomposition, a root
system ®, a set ®* (respectively, ®~) of positive (respectively, negative) roots, a
set II of simple roots (in ®1), etc. As this can be done in the same way as for
semisimple Lie algebras or gl(m), we will merely write down the statements for
later use.

Now let us make the super phenomenon explicit. A root « is even if g, C gg,
and it is odd if go C gi. Denote by ®5 (respectively, ®7) the set of all even
(respectively, odd) roots in ®. Denote

O =@, N®%, I, =&,NI, icZ,.
With respect to the Cartan subalgebra h the Lie superalgebra gl(m|n) admits
a root space decomposition:
g=bho @ Ja;

acd
with a root system
® = {ei—¢; | i,j € I(m|n),i # j}.
The standard set of simple roots is taken to be II = Il U Il7, where
Iy = {; — egrh<icm-1U {6 — i hicicn—1, IIi ={em—ea},
and the associated standard set of positive roots is
ot = {e; — ¢ | i,j € I(m|n),i < j},

where the odd roots are €; — €; with indices ¢ < 0 < j. Clearly, g,
follows by (1.4) that

— CE;. Tt

—€j

(5i = 6j,§i = Ej) = 0,
for all the odd roots d; — €;, where 1 <43 < m,1 < j < n. An odd root a with
(a, @) = 0 is called isotropic. The standard Dynkin diagram is:

6m—€1

81 — 82 Sm—1—9%m €1 — €2 €n—1 — €n

where we have used @) to denote an isotropic odd simple root.

Remark 1.6. The notion of root systems and Dynkin diagrams makes sense for all
the basic classical Lie superalgebras, which consist of gl(m|n),sl(m|n), osp(m|2n)
and three exceptional ones (besides the simple Lie algebras).
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1.4 Non-conjugate Borel subalgebras and ej)-sequences

As we have seen above, the bilinear form on the real subspace hi spanned by
the €;’s is not positive-definite (due to the supertrace), and moreover, there exist
isotropic odd roots.

Another distinguished feature of Lie superalgebras is the existence of non-
conjugate Borel subalgebras or non-isomorphic Dynkin diagrams (under the Weyl
group action).

Lemma 1.7. Let g be a Lie superalgebra with triangular decomposition g =n~ @
h @ nt, which corresponds to the root system ® = &+ U ®~. Let o be an odd
isotropic simple root. Let b =h+nt. Then, ®(a)* := (®T\{a})U{—a} is a new
system of positive roots, whose corresponding set of simple Toots is

I(a) ={Bell| (B,0) =0,8#a}U{B+a|Bell,(8,a) #0}U{-a}.
The new Borel subalgebra corresponding to II(«) will be denoted by b(a).
Proof. Follows from a straightforward verification. O

The process of obtaining II(«) from II above will be referred to as an odd
reflection, and will be denoted by r,, in accordance with the usual notion of real
reflections.

Example 1.8. Associated to gl(1|2), we have &5 = {£(e; — €2)}, and ®7 =
{£(61 — €1),£(61 — €2)}. There are 6 sets of simple roots, that are related by the
real and odd reflections as follows. There are three conjugacy classes of Borel
subalgebras, and each vertical pair corresponds to such a conjugacy class.

O Tél_—)el "'61——)52
61 — €1 €1 —€n €1 — 87 81 — €9 €] —€g €9 — 87
Ir€1_62 ITEI—€2 i"el—e-z

O 7‘61——)62 7'61_—)61
61 —€g €3 — €1 €g — 87 61 — €1 €p — €1 €1 — &y

One convenient way to parameterize the conjugacy classes of Borel sub-
algebras of gl(m|n) is via the notion of ej-sequences. Keeping (1.3) in mind,
we list the simple roots associated to a given Borel subalgebra b in order as
€5 Eigs €l —Cigas ¢ + § Chrin—i s WHETE {81 83400 . oy i f = I(m|n). Switching
the ordered sequence €;, €;, - - - €;,, .. to the ed-notation by (1.3) and then dropping
the indices give us the ed-sequence associated to b. Note that the total number of
d0’s (respectively, €’s) is m (respectively, n).

For example, the three conjugacy classes of Borels for gl(1|2) above corre-
spond to the three sequences dee, €de, €ed, respectively. In more detail, the first
sequence dee is obtained by removing the indices of die;e2 (read off from the



