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Preface

All T know is just what I read in the papers.
Will Rogers

The quote above is quite intriguing to me
and reflective of this text. Everything in this
text can be found either directly or with
“extrapolation” or “deduction” from the
books and papers one can find to date. The
most influential books to this time are
the “Biochemical Engineering Fundamentals” by
J.E. Bailey and D.F. Ollis, “Elements of Chem-
ical Reaction Engineering” by H.S. Fogler, “The
Engineering of Chemical Reactions” by L.D.
Schmidt, “Chemical Reaction Engineering” by
O. Levenspiel, “Bioprocess Engineering—Basic
Concepts” by M.L. Shuler and F. Kargi, and
many others. All these texts and others
have formed part of this text. In no intention
this text is compiled to replace all these great
textbooks of the time. A mere rearrangement
and/or compiling is made in this text to give
you the reader an opportunity to understand
some of the basic principles of chemical and
biological transformations in bioprocess
engineering.

The computer age has truly revolutionized
the literature, beyond the literature revolu-
tion brought about by the mass production
or availability of paper and distribution of
books via library. The explosion of the shear
amount of literature, birth of interdisciplines
and disciplines or subject areas in the past
decades has been phenomenal. Bioprocess
Engineering is one that born of biotechnology
and chemical engineering. With the maturing
of Bioprocess Engineering as a discipline, it
evolves from an interdisciplinary subject

area of Biology and Chemical Engineering,
to a discipline that covers the engineering
and engineering science aspects of biotech-
nology, green chemistry, and biomass or
renewable resources engineering. As such,
textbooks in the area are needed to cover
the needs of educating the new generation
of fine bioprocess engineers, not just by con-
verting well-versed chemical engineers and
engineering-savvy biologists to bioprocess
engineers. I hope that this textbook can fill
this gap and brings the maturity of bioprocess
engineering. Yet, some of the materials in this
text are deep in analyses that are suited for
graduate work and/or research reference.

The key aspect that makes Bioprocess
Engineering special is that Bioprocess Engi-
neering as a discipline is centered around
solving problems of transformation stemmed
from cellular functions and biological and/
or chemical conversions concerning the
sustainable use of renewable biomass. The
mechanism, rate, dynamic behavior, trans-
formation performance and manipulations
of bioprocess systems are the main topics of
this text.

Chapter 1 is an introduction of bioprocess
engineering profession including green
chemistry, sustainability considerations and
regulatory constraints. Chapter 2 is an over-
view of biological basics or cell chemistry
including cells, viruses, stem cell, amino
acids, proteins, carbohydrates and various
biomass components, and fermentation
media. In Chapter 3, a survey of chemical
reaction analysis is introduced. The basic
knowledge of reaction rates, conversion,
yield, stoichiometry and energy regularity
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X PREFACE

for bioreactions are reviewed. The concepts
of approximate and coupled reactions are
introduced, providing the basis of under-
standing for the metabolic pathway repre-
sentations later in the book. Mass and
energy balances for reactor analyses, as
well as the definitions of ideal reactors and
commonly known bioreactors are intro-
duced before an introduction to reactor
system analyses. The biological basics and
chemical reaction basics are followed by
the reactor analysis basics in Chapters 4
and 5, including the effect of reaction
kinetics, flow contact patterns and reactor
system optimizations. Gasification (of coal
and biomass) is also introduced in Chapter 5.
How the ideal reactors are selected, what
flow reactor to choose and what feed
strategy to use are all covered in Chapter 5.

Chapters 6,7, 8,9, 10 and 11 are studies on
bioprocess kinetics. In Chapter 6, you will
learn the collision theory for reaction kinetics
and approximations commonly employed to
arrive at simple reaction rate relations.
Kinetics of acid hydrolysis, of an important
unit operation in biomass conversion, is
introduced as a case study. In Chapter 7, we
turn to discuss the techniques for estimating
kinetic parameters from experimental data,
breaking away from the traditional straight
line approaches developed before the
computer age. You can learn how to use
modern tools to extract kinetic parameters
reliably and quickly without complex manip-
ulation of the data. In Chapters 8 and 9, we
discuss the application of kinetic theory to
catalytic systems. Enzymes, enzymatic reac-
tions and application of enzymes are exam-
ined in Chapter 8, while adsorption and
solid catalysis are discussed in Chapter 9.
The derivation of simplified reaction rate
relations, such as the Michaelis—Menten
equation for enzymatic reaction and LHHW
for solid catalysis, is demonstrated. The
applicability of these simple kinetic relations

is discussed. In Chapter 9, you will learn both
ideal and non-ideal adsorption kinetics
and adsorption isotherms. Is multilayer
adsorption the trademark for physisorption?
The heterogeneous kinetic analysis theory
is applied to reactions involving woody
biomass where the solid phase is not catalytic
in §9.5. Chapter 10 discusses the cellular
genetics and metabolism. The replication of
genetic information, protein production,
substrate uptake, and major metabolic path-
ways are discussed, hinting at the application
of kinetic theory in complicated systems. In
Chapter 11, you will learn how cell grows:
cellular material quantifications, batch
growth pattern, cell maintenance and endog-
enous needs, medium and environmental
conditions, and kinetic models. Reactor anal-
yses are also presented in Chapters 8 and 11.

In Chapters 12 and 13, we discuss the
controlled cell cultivation. Continuous
culture and wastewater treatment are dis-
cussed in Chapter 12. Exponential growth
is realized in continuous culturing. An
emphasis is placed on the reactor perfor-
mance analyses, using mostly Monod growth
model in examples, in both Chapters.
Chapter 13 introduces fed-batch operations
and their analyses. Fed batch can mimic expo-
nential growth in a controlled manner as
opposed to the batch operations where no
control (on growth) is asserted besides envi-
ronmental conditions.

Chapter 14 discusses the evolution and
genetic engineering, with an emphasis on
biotechnological applications. You will learn
how cells transform, how cells are manipu-
lated, and what some of the applications of
cellular transformation and recombinant
cells are. Chapter 15 introduces the sustain-
ability perspectives. Bioprocess engineering
principles are applied to examine the sustain-
ability of biomass economy and atmospheric
COs. Is geothermal energy a sustainable
or renewable energy source? Chapter 16
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discusses the stability of catalysts: activity of
chemical catalyst, genetic stability of cells
and mixed cultures, as well as the stability
of reactor systems. Sustainability and
stability of bioprocess operations are dis-
cussed. A stable process is sustainable.
Multiple steady states, approach to steady
state, conditions for stable operations and
predator—prey interactions are discussed.
Continuous culture is challenged by stability
of cell biomass. In ecological applications,
sustainability of a bioprocess is desirable.
For industrial applications, the ability of the
bioprocess system to return to the previous
set point after a minor disturbance is an
expectation. In Chapter 17, the effect of

mass transfer on the reactor performance, in
particular with biocatalysis, is discussed.
Both external mass transfer, e.g. suspended
media, and internal mass transfer, e.g. immo-
bilized systems are discussed, as well as
temperature effects. The detailed numerical
solutions can be avoided or greatly simplified
by following directly from the examples. It is
recommended that examples be covered in
classroom, rather than the reading material.
Chapter 18 discusses the reactor design and
operation. Reactor selection, mixing scheme,
scale-up, and sterilization and aseptic opera-
tions are discussed.

Shijie Liu
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consumption

Thermal flux, J/s or W
Volumetric flow rate, m®/s

Thermal energy transfer rate into
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1

Introduction

OUTLINE
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of Bioprocess Engineering 12

1.1. Biological Cycle
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1
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Enginbexing ? 1.10. Summary 18

1.6. Mathematics, Biology, and Dot lame 20

Engineering 11

1.1. BIOLOGICAL CYCLE

Figure 1.1 illustrates the natural biological processes occurring on Earth. Living systems
consist of plants, animals and microorganisms. Sunlight is used by plants to convert CO,
and H,O into carbohydrates and other organic matter, releasing O,. Animals consume plant
matter, converting plant materials into animal cells, and using the chemical energy from
oxidizing plant matter into CO, and H>O (H;O also serves as a key substrate for animals),
finishing the cycle. Microorganisms further convert dead animal and/or plant biomass
into other form of organic substances fertilizing the growth of plants, releasing CO, and
H>0O, and the cycle is repeated. Energy from the Sun is used to form molecules and organisms
that we call life. Materials or matter participating in the biological cycle are renewable so long
as the cycle is maintained. Bioprocess engineers manipulate and make use of this cycle by
designing processes to make desired products, either by training microorganisms, plants,
and animals or via direct chemical conversions.

Bioprocess Engmeering ——

http://dx.doi.org/10.1016/B978-0-444-59525-6.00001-9 1 © 2013 Elsevier B.V. All rights reserved.
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FIGURE 1.1 The natural biological processes.

The reactor is the heart of any chemical and/or biochemical processes. With reactors,
bioprocesses turn inexpensive sustainably renewable chemicals, such as carbohydrates,
into valuable ones that humans need. As such, bioprocesses are chemical processes
that use biological substrates and/or catalysts. While not limited to such, we tend to
refer to bioprocesses as 1) biologically converting inexpensive “chemicals” or materials
into valuable chemicals or materials and 2) manipulating biological organisms to serve
as “catalyst” for conversion or production of products that human need. Bioprocess engi-
neers are the only people technically trained to understand, design, and efficiently
handle bioreactors. Bioprocess engineering ensures that a favorable sustainable state or
predictable outcome of a bioprocess is achieved. This is equivalent to saying that bio-
process engineers are engineers with, differentiating from other engineers, training in
biological sciences, especially quantitative and analytical biological sciences and green
chemistry.

If one thinks of science as a dream, engineering is making the dream a reality. The
maturing of Chemical Engineering to a major discipline and as one of the very few well-
defined disciplines in the 1950s has led to the ease in the mass production of commodity
chemicals and completely changed the economics or value structure of materials and chem-
icals, thanks to the vastly available what were then “waste” and “toxic” materials: fossil
resources. Food and materials can be manufactured from the cheap fossil materials. Our
living standards improved significantly. Today, chemical reactors and chemical processes
are not built by trial-and-error but by design. The performance of a chemical reactor can be
predicted, not just found to happen that way; the differences between large and small reac-
tors are largely solved. Once a dream for the visional pioneers, it can now be achieved at ease.
Fossil chemical and energy sources have provided much of our needs for advancing and
maintaining the living standards of today. With the dwindling of fossil resources, we are
facing yet another value structure change. The dream has been shifted to realizing a society
that is built upon renewable and sustainable resources. Fossil sources will no longer be abun-
dant for human use. Sustainability becomes the primary concern. Who is going to make this
dream come true?



