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PREFACE

This book is an introduction to the mechanisms of various molecular
interactions as studied mainly by molecular electronic absorption and
emission spectra and partly by infrared spectra. We are concerned mainly
with complex organic molecules having n-electron system whose electronic
behaviors have been studied extensively.

Many fine monographs have already been published concerning the
quantum theory of molecular electronic structures as well as those per-
taining to the molecular electronic spectra and including molecular
interactions. However, to our knowledge, there is no introductory book
which summarizes all the important topics of molecular interactions such
as hv- v »zen bonding, charge transfer, solute-solvent interactions, both in
the giv .nd and in the excited electronic states, and the energy transfer
phenomena. This book is an attempt to give, from a unified viewpoint, a
general and introductory interpretation for these phenomena.

Chapters 1 to 3 give elementary descriptions and summaries of the
quantum theories of molecular electronic structures as well as the electron.c
absorption and emission spectra since the knowledge of these fundamental
theories seems to be important and necessary to understand the thoretical
background of molecular interaction phenomena. Chapter 4 deals with the
radiationless transition caused by interactions between electrons and
nuclear vibrations as well as spin—orbit interaction. The mechanisms of the
radiationless transitions are being studied quite extensively at present.
Chapter 5 gives a brief account of the mechanisms and experimental
examples of the intermolecular electronic excitation transfer in fluid
solutions and in solids.
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iv PREFACE

Chapter 6 gives a systematic account of electron donor-acceptor com-
plexes. Namely, the interpretation of the nature of the electron donor—
acceptor interactions as put forth by Mulliken, the classification of the
donors and acceptors, and the electronic absorption and luminescence
spectra of the complexes are discussed from various viewpoints. In
Chapter 7, the mechanisms of hydrogen bonding and its effect on the
electronic absorption and emission spectra as well as on the infrared
spectra are discussed. Chapter 7 is rather closely connected with Chapter 6
because the hydrogen bonding would be ascribed to the electron donor—
acceptor interactions between the proton donor and acceptor. Throughout
these chapters we paid particular attention to discussing charge transfer
theory and related phenomena along with the development of theory and
experiment.

Chapter 8 gives general interpretations and experimental examples of the
solvent effects on the electronic absorption and fluorescence spectra. This
is a topic that is difficult to omit because the mechanisms of solute-solvent
interactions are essential to the understanding of the chemical and physical
processes in solution. And, it is known that the experimental application
of these theories to explain the solvent effect on absorption and
emission spectra of organic compounds gives reliable information about
molecular electronic structures in ground and excited states.

In the last chapter, we discuss the excimer formation and related pro-
cesses which arise only in electronically excited states. The mechanisms of
the excimer formation between two identical molecules, as well as that
between different molecules, are also closely connected with the discussions
in the other chapters because the main part of the binding energy in the
excimers seems to be ascribable to the electronic delocalization between
the partners in the excimer. In addition to this, a systematic discussion is
given for the luminescence quenching reactions in solution, in relation to
the excimer formation-decomposition processes. The atomistic or elec-
tronic mechanisms of the luminescence quenching processes are now being
studied quite intensively. One of the important mechanisms of the lumi-
nescence quenching reactions is the intermolecular electron transfer
process, which is also closely connected with the discussions given in the
other chapters.

Although the experimental results for the molecular interactions of the
complex organic molecules are quite complicated, we have tried to inter-
pret the phenomena from a unified viewpoint as far as possible in order
that the readers can easily understand the basic concepts for discussing
various aspects of the molecular interactions. Thus, because our purpose
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is not to write a review article for each topic in molecular interactions, but
to make a systematic interpretation of the molecular interactions on the
grounds of molecular electronic structure, our selection of the references is
not complete.

Because molecular interaction studies are now rapidly progressing,
both theoretically and experimentally, some parts of this book may
require some revision in the future. However, the most fundamental views
expressed throughout this book will not in all probability change.

This book can be used as a reference book for the advanced under-
graduate students or graduate students. Also, we hope that it will be of
some help to research workers interested in the field of the molecular
interactions and molecular electronic spectra.
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Chapter 1
ELEMENTS OF QUANTUM MECHANICS

1-1. Schrodinger Equation . Los om oH w4 1
1-2. Physical Quantities and Hermnean Operators o« & W B o® B 3
1-3. Commutators and Uncertainty Relations e @ @ @ B 6
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It is necessary to use quantum mechanics for the description of the
microscopic phenomena. We summarize here elementary principles of
quantum mechanics and some elementary formulas which will be used in
this book.

1-1. SCHRODINGER EQUATION

Let us consider the dynamical state of an electron moving under the
influence of a potential V(r). In quantum mechanics the dynamical state
of this system is described by the wave function W(r, t), and the observable
quantities such as energies and momentums are expressed by operators
which operate on the wave functions. The total energy E of the system can
be expressed by using the momentum p which is canonically conjugate
to the coordinate r, as follows:

2

. v
E=o# =>—+ V@) (1-1)

A is called the Hamiltonian of the dynamical system. We replace the
momentum by the differential operators.

1



2 1-1. SCHRODINGER EQUATION

h 0 h o h o

- -, L 1-2
P27 ox py%i@y P-=7 %2 (2
In general, the state of a system changes with time, and the dynamical
equation of motion including this time variation is written as

o¥(r, 1)

if
ifh %

= #Y(r, t) (1-3)

Equation (1-3) is the fundamental equation of quantum mechanics, the
Schrédinger equation. In other words, in the quantum mechanical transla-
tion of the classical equation,

E= #(p,r) (1-4)

we replace the energy and momentum by the operators, according to the
correspondence rule
a h

E—»iha, p—)i—V (1-3)

. 0 0 0
where V is the vector operator, V = (1 —+j—+k —), where i, j, and
ox "oy 0z
k are unit vectors.
The generalization of this procedure to the many particle system is

straightforward. The total energy of this system is
E= #(; T, TP By B (1-6)

By using the correspondence rule (1-5), the Schrodinger equation may be
written as

h o ﬁi)\P(rl cr, ) (1)

.0
zhaW(rl---r",t)=ﬂ(rl---r,,,i—a—l.. Ir-

Let us consider a complex atom with a nucleus of charge Ze and mass M,
and Z electrons. The Schrodinger equation for this system may be written
as

., 0
zha‘P(R,r1 e By 1)

h2 F—_Ze? e?
- | Z:A LRt AT 3l

Jj=1 i<k

“WR, 1, L, 1) (1-8)
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where R is the nuclear coordinate, r is the electronic coordinate, and A is
the Laplacian operator div - grad = (V+V); i.e.,

02 0? 02 o? 0? 0?
—_— =+ —. Ai=—4+—+—
Xtz YTt

For a complex molecule, the equation becomes

AR=

., 0
zha‘i‘(R,-'-RN,r, SHE R )

N p 2 N Ze?
_ % A -
[ EZ% 2A4i ! 2”112% ,Z;JE;IR,—-TI

)
+ '—’+ _e_]

i<tIR =R S |r;— 1
“W(R; -~ Ry ¥y o Ty t) (1-9)

where

al az 62

A= — e ——

=oxz oy Tz
When the Hamiltonian # does not explicitly depend upon the time (i.e.,
the system is conservative), we can get a solution representing a state of
well-defined energy E = hw, where w is the angular frequency of the wave
Y. This relation between the energy of the system and the angular fre-
quency of the wave is the fundamental postulate of the matter wave, which

has the form exp[i(Kr — wt)]. K is the wave vector of the matter wave.
Therefore, we can assume that

Y(r, t) = ¥Y(r)e i = W(r)e ‘E/ (1-10)
Substituting (1-10) into Eq. (1-3), we get
HY(r) = E¥(r) (1-11)

This is the time-independent Schrodinger equation. When Egs. (1-10) and
(1-11) hold, the system is said to be in a stationary state. When we are
considering the electronic “energy levels” of atoms and molecules, the
relevant wave functions are those of stationary states.

1-2. PHYSICAL QUANTITIES AND HERMITEAN OPERATORS

If a dynamical variable F represents a physical quantity, it is a real
function of the r and p because the results of measurements of F are
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real quantities. In other words, the operator F must be Hermitean. If F
is Hermitean, Eq. (1-12) holds, where ®,, and ®, are any two functions
of the function space in which the operator F acts:

Fpn= [@}F®, dv = [®IF*0, dv=F}, (1-12)

We can show easily that the Hamiltonian and momentums are Hermitean.
Note that

H,,-H,,=|H,|>  where H,, = f ®F #D, dv

It is well known in quantum mechanics that one cannot attribute a
precise position to a particle because of the spatial extension of the associa-
ted wave function ¥(r). We can only define the probability of finding the
particle in a given region of space when we make a measurement of
position. The probability of finding a particle in a small volume dv =
dx dy dz at r(x, y, z) may be given by

P(r) dv = |¥(r)|? dv (1-13)

The integration of Eq. (1-13) over whole space must be unity, leading to
the normalization of ¥':

st|\1'(r)|2 dy =1 (1-14)

In the case of a many-particle system, the probability of finding the first
particle in dv(1), the second one in dv(2), and the nth one in dv(n) may be
written as

P(ry,x, 1) dv(l) -+ dv(n) = |¥(ry -~ 1,)|* do(1) - - - dv(n)
=¥, 1) dv (1-15)
The normalization condition is
stw(rl cer)Pdo=1 (1-16)

We can easily show that the integral N in Egs. (1-14) and (1-16) is indepen-
dent of time (i.e., (dN/dt) = 0) from the Hermitean property of the Hamil-
tonian.

Let us consider the eigenvalue equation

Fb,=a,®, (m=1,2..) (1-17)
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Equation (1-17) means that when the observed value of F is a,,, the system
is in the state ®,,, a,, is the mth eigenvalue, and ®,, is the mth eigenfunction
of F.

In general, we can expand an arbitrary function ¥ (which is not an
eigenfunction of F) in terms of ®,,:

¥=Yc,®, (1-18)

In this case the probability of finding the system in state ®, may be given
by

p_ ol
"l
m

Now, if a, and a,, are different eigenvalues of the Hermitean operator F,
the corresponding eigenfunctions ®, and ®,, are orthogonal to each other.
This is easily proved as follows: Because

f [F®,]*®, dv = a, f ®* D, dv,

(1-19)

f ®*F®, dv = a, f ®*d,dv  and f [F®,]*®, dv = f O F®, dv,
(a, — a,,) fd),’f,d),, dv=0
Therefore JCD,’:‘, ®,dv=0

In some cases, @ may be a degenerate eigenvalue; i.e., there may be n
eigenfunctions ®*), ®? --- @™ for the same a value (n > 2). From the
viewpoint of the preceding arguments, the degenerate eigenfunctions are
not necessarily orthogonal to each other. However, we can form appro-
priate linear combinations of these functions to transform them to an
orthogonal set of function @™, @@ --- ™ as follows: First we take
o = @V, We define ¢® by

P? = ¢, 0V + ¢, @ (1-20)

and orthogonalize ¢ to ¢™:
fgo‘”*(p(z’ dv=c, f(b(l)*(p(l) dv +c, fq)(l)*(I)(Z) i =10
We assume here that the ®¥ are normalized; then

f‘P(l)*‘p(Z) do = ¢, + ¢ f¢(1)¢¢(2) dv=0 (1-21)
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From (1-21) the ratio r = ¢,/c, can be determined. With this ratio r and
the normalization condition for ¢‘®’, we can determine the coefficients
¢; and ¢, . Similarly, we put

(p(s) = dlq)(l) + dz(l)(z) +d; o) (1-22)

and determine the coefficients d,, d,, and d; in such a way that ¢ is
normalized and orthogonal to ") and ¢®). We repeat this procedure until
we get ™,

Summarizing the argument above with regard to the orthonormality of
the eigenfunctions, for all eigenfunctions of an operator F we may write

f ¥ D, dv = 5, (1-23)

where J,,, is the Kronecker delta.
Now the probability that the system has the eigenvalue a,, as given in
Eq. (1-19), may be written, owing to the orthonormality of functions, as

2

P,= fcp;:lp dv| = ckc, = |c,|? (1-24

assuming that W is normalized. The (statistical) mean value of the quantity
F when the system is in state ¥ may be given by

(F}=Za,,P,,=Za,,c,’,"c,,=Za,,|c,,|2 (1'25)
n n n
In general, the mean value of F is defined by
(F> = f PHFY dp (1-26)
We can see easily that Eq. (1-26) reduces to Eq. (1-25) as follows:

f\y*w dv = f‘P*F(Z c,,(D,,) dv
=Y @, J.‘P*(l),, dv=Y a,c,ck =Y a,lc,|?

1-3. COMMUTATORS AND UNCERTAINTY RELATIONS

For the product of momentum and the conjugate coordinate (p, - x,
for example), we have the following relation:

0
pXx¥ = —ih—x¥ = —ih‘P—xihi‘P
Ox Ox

= —ih¥ + xp, ¥ DX — Xp, = —ih (1-27)



