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PREFACE

In this book we cover initial value problems for Volterra functional differential
equations characterized by the presence of discretely distributed delays, possibly
of neutral type, usually called “delay differential equations”.

The interest of applied mathematicians for the numerical solution of such a
class of problems has increased considerably in the last decades and the number of
papers dealing with different aspects of their numerical integration now amounts
to several hundreds. Nevertheless, there is no book describing, analyzing, unify-
ing and, where necessary, extending and improving the various approaches and
techniques appearing in the literature.

Indeed, this is the main aim of this book, which is intended for a wide variety
of readers, including mathematicians, physicists, engineers, economists and other
scientists ranging from those who are most interested in the theoretical aspects
of numerical methods for ordinary and delay differential equations to those who
are just looking for a suitable technique in order to simulate their own model by
numerically solving some specific equations. The second aim is to bridge the gap
between the basic knowledge on discrete and continuous numerical methods for
ordinary differential equations in view of possible applications to dense output,
error estimation, discontinuous equations, problems with driving equations and,
of course, delay differential equations and more general Volterra differential and
integro-differential equations.

Although we have reported many concepts and results on accuracy and stabil-
ity of numerical methods for ordinary differential equations (mainly in Chapters
3, 5 and 8), for a fruitful reading of the book, at least a basic level knowledge of
these topics is recommended.

In the introductory Chapter 1 we formalize the classes of problems treated
and focus on some of the most significant qualitative differences between delay
equations and ordinary equations, as well as on how such differences reflect in
their numerical treatment.

In Chapter 2 we discuss the regularity of the solutions by analyzing how the
discontinuities, caused by different types of delays, propagate along the solutions
and the impact this lack of smoothness has on the design of efficient numerical
methods. Far from being exhaustive, the chapter also reports some existence and
uniqueness results for the most known classes of delay equations.

Chapter 3 deals with a general formulation and convergence results for dis-
crete and continuous methods for ordinary equations, followed by an introductory
review of the most used numerical methods for delay equations, including a fast
“historical” excursus.

Chapter 4 is devoted to the error (convergence) analysis of the most usual
technique, based on the use of a discrete method for ordinary equations endowed
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with some interpolant, which we call “the standard approach”. It is also shown
that, despite the fact that any discrete method is, in principle, suitable for the
standard approach, one-step methods (essentially Runge-Kutta methods) are
preferable to multistep methods. At the end, a list of available codes is given.

Chaper 5 is a self-contained presentation of the “continuous Runge-Kutta
methods”. Besides being the bricks for the construction of the standard approach
for delay equations, as developed in the rest of the book, this chapter provides,
on a small scale, one of the first systematic collections of results on continuous
Runge-Kutta methods useful for treating discontinuous differential equations,
systems with driving equations, dense output and more general Volterra func-
tional differential equations.

Chapter 6 specializes the theory presented in Chapter 4 for the class of con-
tinuous Runge-Kutta methods and provides several additional results on super-
convergence for “constrained mesh” methods.

Chapter 7 treats the stepsize control mechanism. As with ordinary differen-
tial equation solvers, this issue plays a central role in the production of efficient
numerical algorithms for delay equations. In particular, we discuss the impor-
tance of the choice of the continuous extension in the estimation of the local
error and its influence on the response of the global error to the user supplied
tolerance. Finally, we illustrate the implementation of RADARS, the most re-
cent code designed for a very general class of stiff delay equations, for two critical
examples.

The last chapters, Chapters 8, 9 and 10, are entirely devoted to the important
issue of stability. They are largely theoretical, discussing quite technical aspects;
nevertheless, in order to produce efficient numerical algorithms for particular
classes of “stiff” delay problems, knowledge of most of their contents is crucial.

Chapter 8 is relevant to ordinary differential equations and provides an essen-
tial review of stability concepts and results for Runge-Kutta methods, including
the first systematic presentation of the so-called “stability with respect to forc-
ing terms”. Chapters 9 and 10 address the stability analysis of some classes of
test delay equations and of Runge-Kutta methods for their stable integration,
respectively. In particular, due to the many-sided stability requirement and to
the large variety of significantly different test equations, several definitions of sta-
bility for numerical methods are introduced in Chapter 10. In the corresponding
stability analysis of continuous Runge-Kutta methods, some order barriers are
proved that make the standard approach unsuitable for the most general delay-
dependent asymptotic stability property of linear delay systems. A completely
different approach, based on restating the delay equation as an “abstract Cauchy
problem” and, equivalently, as a partial differential equation with suitable ini-
tial/boundary conditions, is then considered. These alternative approaches, still
under investigation, overcome the mentioned order barriers and show good po-
tential for the stable integration of an even larger class of Volterra functional
differential equations. Chapter 10 ends with some specific additional stability
issues which have been developed in the literature or are still in progress.

Throughout the book we provide many examples and discuss the results by
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means of illustrative numerical experiments. We also supply many algorithms
(often in the form of pseudo-codes), so that the interested reader can write his
own computer programs without too much effort.

We wish to thank all who have helped us either by useful suggestions and
discussions or by providing material for examples, illustrations, bibliographic
references, etc. and, in general, by encouraging us to pursue the realization of
this book (in particular, C.T.H. Baker, H. Brunner, N. Guglielmi, E. Hairer,
V. Kolmanovskii and S. Maset). We want to give particular thanks to K. Burrage,
who gave a detailed reading of an advanced version of the book.

Finally, we want to thank our very understanding wives for their support and
great deal of patience while drafting the book.

Trieste

A. B.
July 2002 M. Z.
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1
INTRODUCTION

Many real-life phenomena in physics, engineering, biology, medicine, economics,
etc. can be modeled by an initial value problem (IVP), or Cauchy problem, for
ordinary differential equations (ODEs) of the type

g e o

where the function y(t), called the state variable, represents some physical quan-
tity that evolves over time.

However, in order to make the model more consistent with the real phe-
nomenon, it is sometimes necessary to modify the right-hand side of (1.0.1) to
include also the dependence of the derivative 3’ on past values of the state vari-
able y. The most general form of such models is given by the retarded functional
differential equation

yl(t) = f(t’yt)v t > to,

where y; = y(t + 0), 6 € [—r,0], is a function belonging to the Banach space
C = C°([~r,0],R?) of continuous functions mapping the interval [—r,0] into R?,
and f: Q — R? is a given function of the set 2 C R x C into R?.
In this context y'(t) stands for the right-hand derivative y'(t)", and the initial
value problem is
y’(t) = f(tvyt)v t2t07
A e
where ®(0) € C represents the initial point or the initial data.

Equation (1.0.2), also called the Volterra functional differential equation, in-
cludes both distributed delay differential equations, where f depends on y com-
puted on a continuum, possibly unbounded (r = +00), set of past values, and
discrete delay differential equations, where only a finite number of past values of
the state variable y are involved. Despite the latter being special cases of the for-
mer, they are suitable to describe a wide class of phenomena in many branches of
applied mathematics and we shall confine our interest to them. Throughout the
book they will be referred to as delay differential equations (DDEs) or difference
differential equations.

The general theory of DDEs is widely developed and we refer the reader to
the classical books by Bellman and Cooke [39], Hale [120], Driver [77], El'sgol’ts
and Norkin [80] and to the more recent books by Hale and Verduyn Lunel
[122], Kolmanovskii and Myshkis [171], Kolmanovskii and Nosov [172], Diek-
mann, van Gils, Verduyn-Lunel and Walter [74] and Kuang [182], which also
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include many real-life examples of DDEs and more general retarded functional
differential equations.

1.1 DDEs versus ODEs: some examples

Throughout the book, the initial value problem (1.0.2) will be expressed in a
more friendly manner by

'@ =Fftyt—11),...,yE— 7)), t2>to,
{3<t>:¢<§>,” e ) 0 (1.1.1)

Here, according to the complexity of the phenomenon, the delays (or lags) 7;,
which always are non-negative, may be just constants (the constant delay case),
or functions of ¢, 7; = 7;(t) (the variable or time dependent delay case), or even
functions of ¢ and y itself, 7, = 7;(t,y(t)) (the state dependent delay case). In
order to simplify the notation, the function ¢(¢) is understood to be defined in
[p, to], where

p=zis, {min¢ -}
In particular, for state dependent delays, the bound p cannot be determined a
priori.

An interesting and quite common case is given by n = 2 and 71 = 0 for which
(1.1.1) takes the standard form

"t) = f(ty@®),yt 7)), t>to,
{iw:m&ytfm ) ’ (1.1.2)

Since for some t > to it can be that t — 7 < tg, a first difference between
equations (1.0.1) and (1.1.2) is that the solution of the latter is usually deter-
mined by an énitial function ¢(t) rather than by a simple initial value yo, as
happens for the former. In general, the right-hand derivative y'(to)", that is
f(to, ¢(to), d(to — 7)), does not equal the left-hand derivative ¢'(to)~ and hence
the solution y is not smoothly linked to the initial function ¢(t) at the point
to, where only C°-continuity can be assured. Moreover, such a derivative jump
discontinuity propagates (see Chapter 2) from the initial point #o along the in-
tegration interval and gives rise to subsequent discontinuity points where the
solution is smoothed out more and more. As a consequence, even if the functions
f(t,y,z), 7(t,y) and ¢(t) in (1.1.2) are C°°-continuous, in general the solution
y(t) is simply C'-continuous in [to,ts].

Example 1.1.1 Consider the equation

"ty =—-y(t—1), t>0,
{aﬂzLytga (1.1.3)

whose solution is depicted in Figure 1.1. Since y'(0)~ = 0 and y'(0)* = —y(-1) =
—1, the derivative function y'(¢) has a jump at ¢t = 0. The second derivative y" (¢)
is given by
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21 o 1 2 =)
Fi1a. 1.1. Solutions of (1.1.3).

y'(t)=—y't-1),
and therefore it has a jump at ¢t = 1. The third derivative y'"(t) is given by

y'(t) =-y"t-1) =y'(t-2),

and hence it has a jump at ¢t = 2, and so forth at multiples of the delay t = 3,4, ...
O

The presence of an initial function in the problem (1.1.2) has various other
unexpected consequences on the solutions. Some of them are illustrated by the
following examples.

Example 1.1.2 Unlike the ordinary equations, there is no longer injectivity
between the set of initial data and the set of solutions y(t), t > to. In fact, the
equation

y’(t) = y(t - 1) (y(t) - 1)a t 2 07
has the constant solution y(¢) = 1 in [0, +00) for any initial function ¢(t) defined
in [—1,0] such that ¢(0) = 1. &

The next two examples show that, in the state dependent delay case, the lack
of regularity of the initial function ¢(t) may cause a loss of uniqueness for the
solution of (1.1.2) or its termination after some bounded interval.

Example 1.1.3 As an example of non-uniqueness, consider the equation

‘@) =ylt-ly®|-1)+3 t>0,
{z(t)=g((t), thso, )+ (1.1.4)

where
1, t< -1,
¢(t) = {0, _1<t<o. (1.1.5)

It is easy to see that in [0, 2] both functions
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y(t) =

N
o~

and
y(t) =

=
~~

are solutions of (1.1.4). ¢

Example 1.1.4 (see El’sgol’ts and Norkin [80]) As an example of termination
of the solution, consider the equation

y' () =—y(t-2-y®)?) +5 >0,
{y(t) =¢(t), t<O0, (1.1.6)
where
%’ t< _17
() = (1.1.7)
=L 2L

2

The solution in [0, }22] is given by

t-1), 0<t<g1,

¥t =1 N (1.1.8)
Li-1), 1<t<iB

It is not difficult to see that the solution cannot be continued beyond the
point t = 123 1In fact, at t = 122 the deviated argument t — 2 — y(t)? is equal
to —1 and therefore, in a right neighborhood of such a point, y(t — 2 — y(t)?) is

given by one of the two values of ¢(¢). Thus the solutions of (1.1.6) should take

the form
y(t) =c(t-12) + &,
with
c=% ift—-2—y(t)?<-1
and

c=4% ift—2-yt)>>-1.

Now, each choice of ¢ leads to a solution y(¢) that contradicts the assumption
made on ¢ — 2 — y(¢)? and hence the solution does not exist for ¢ > %—3—?— It
is worth remarking that, from a numerical point of view, termination of the
solution is a very delicate issue. In fact, it may result in surprising and misleading
behavior in the implementation of the numerical method. For example in a right
neighborhood of the termination point ¢ty = %, where yy & T the forward
Euler method reads

Yn+l = Yn + hn+1(__ +5) ift,—2- y?l <-1
and
Yntl = Yn + hn+l(% *+ 5) if t, —2— yg > -1,
and for no reason it stops integrating at any n > N. The resulting approxima-

tion is plotted in Figure 1.2 where, for ¢ > 125, a ghost solution appears that
g 121



