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PREFACE

This volume constitutes the proceedings of the Workshop on Integer Program-
ming that was held in Bonn, September 8-12, 1975. The Workshop was organized
by the Institute of Operations Research (Sonderforschungsbereich 21), University
of Bonn and was generously sponsored by IBM Germany. In all, 71 participants
from 13 different countries took part in the Workshop.

Integer programming is one of the most fascinating and difficult areas of
mathematical optimization. There are a great many real-world problems of large
dimension that urgently need to be solved, but there is a large gap between the
practical requirements and the theoretical development. Since combinatorial
problems in general are among the most difficult in mathematics, a great deal of
theoretical research is necessary before substantial advances in the practical
solution of problems can be expected. Nevertheless the rapid progress of research
in this field has produced mathematical results significant in their own right and has
also borne substantial fruit for practical applications. We believe that this will be
adequately demonstrated by the papers in this volume.

The 37 papers appearing in this volume cover a wide spectrum of topics in integer
programming. The volume includes works on the theoretical foundations of integer
programming, on algorithmic aspects of discrete optimization, on specific types of
integer programming problems, as well as on some related questions on polytopes
and on graphs and networks.

All the papers have been carefully referred. We express our sincere thanks to all
authors for their cooperation, to the referees for their useful support, to numerous
participants for stimulating discussions, and to the editors of the Annals of Discrete
Mathematics for their willingness to include this volume in their new series.

Bonn, 1976 The Program Committee
P. Schweitzer P.L. Hammer
IBM Germany E.L. Johnson

B.H. Korte

G.L. Nemhauser
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We consider the problem

) min ¢'x
s.t. Nx + By = b,
xEN, yeZ"

where N is an (m,r), B an (m, n) integer matrix, and b € Z™. In Section 2 we characterize all
solutions x EZ" of () by an explicit formula and give as a corollary a minimal group
representation of equality restricted integer programs, where some of the nonnegativity restric-
tions are relaxed. In Section 3 we discuss decomposing integer programs over cones in case the
matrix N has special structure.

1. Introduction

We consider the problem

min ¢'x
st.Nx + By =b (1.1)
xEN,yeZ"

where N is an (m,r) and B an (m, n) integer matrix. As B is an arbitrary (m, n)
integer matrix, the convex hull of the feasible set of (1.1) is a generalized corner
polyhedron, that is an equality restricted integer program, where the nonnegativity
restriction of some of the variables are relaxed. To give a group representation of
the problem, we reformulate (1.1) as a congruence problem,

minc'x
st.Nx =b modB 1.2)
xEN



2 A. Bachem

where we define Nx =b (mod B), iff there is a A €Z", such that Nx — b = BA
- holds. To set this definition in a more general framework we have to introduce the
concepts of Smith and Hermite normal form.

Definition. If B is an (m, n) integer matrix, we denote by S(B) and H(B) the Smith
and Hermite normal form of B, S*(B) and H*(B) denotes the nonsingular part of
S(B), H(B) resp. The unimodular matrices which transform B into Smith normal
form are denoted by Us, K and the projection matrices, which eliminate the
nonsingular part S*(B) of S(B) are denoted by W3, V. Thus we have S*(B) =
W5 Us BKjp V.

Sometimes it is advantageous to look at congruences from an algebraic point of
view, that is to look at the definition of a:=x(=moda)' as an image of the
function a:= h.(x) = x — a[x/a] (where “[x]”” denotes the integer part of x). For
(m, n) matrices B with rank (B) € {m, n} the scalar a is replaced in the above
formula and we get the generalized form as

hs(x):=x — B[B'x]

where B denotes the Hermite form H(B)V; of B (the zero colums of H(B) are
omitted) and where B' denotes the Moore-Penrose inverse of B. In fact we have

Proposition (1.3). Let G be an additive subgroup of Z™. The map hs : G — hs(G) is
a homomorphism onto (hs(G), ®) with kernel (hs)={x € G |x =BA A EZ}, and.
x@y:=hg(x +y).
Remark (1.4). Obviously
a = x (= mod B)
<> a-x=BA forsome A EZ"
<> a—x € keméel(hg) holds

and so problem (1.1) is equivalent to

min ¢'x
@ ha(N.)- x. = ha(b), (1.5)
i=1 .
x; €EN,
where N; denotes the ith column of the matrix N and *“ = " is the group equation in

the group G(B):=hs(Z™).

Proof of Proposition (1.3). Since B has maximal column range, B’ B is regular, and
we have

! “.=’ means that the left side of the equation will be defined.
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B'B=(B'B)B'B=1".
So we conclude
hs(x)@ha(y) = ha(x)+ hs(y)— B[B'(x + y)— ((B'x]+[B'y])]
=x+y—-B[B'(x +y)]
=hs(x +y),

hence hs is a homomorphism. Let x € kernel(hs), that means x = B[B'x]. If we
denote b:=[B'x]€Z’" and a:=(b",0..,) we conclude x = H(B)a and x = Bc
where ¢ = Ka, here K denotes the unimodular right multiplicator of H(B). Let
now x = Ba with a € Z", that means x = Bb, b € Z'. With B'x = b we conclude
hs(x)= x — B[B'x] = Bb — Bb = 0 which completes the proof.

Clearly problem (1.5) is a group problem over the group G(B), which is not
necessarily of finite order (it depends obviously on the rank of B). If we follow the
usual definition of equivalent matrices (cf. (5)), that is the (m, n) integer matrix A
and the (r,s) integer matrix B are equivalent iff they have the same invariant
factors (apart from units), we get a slight generalization of a well known fact:

Remark (1.6). The groups G(A) and G (B) are isomorphic, iff the matrices A and
B are equivalent and m-rank (A )= r-rank (B)holds.

Using this result it is easy to give a formula for the number of different
(nonisomorphic) groyps G(B), where the product of invariant factors of the (m, n)
matrices B is fixed. This number is well known for regular (m, n) integer matrices
B. Here we are going to treat the general case.

Definition. Let B be an (m, n) integer matrix. We call the product of the invariant
factors of B the invariant of B (inv (B)) which coincides with the determinant of B
in case B is a square nonsingular matrix.

If d =11}, = P}i is a representation of d = inv(B) as a product of prime factors
and p a function from N? into N defined recursively as

p(n,m), Isn<m,

p(n’m):={p(n,m—1)+p(n—m,m), n=m=1,

p(0,m):=1,p(n,0):=0(n, m €N), we define

k
K(d):=sugl_[p(e;,m)
mEN j=

L(dm):=3: 1 p(es ).

i=1 j=
Proposition (1.7). The number of nonisomorphic groups G (B), where B varies over

all (m,n) integer matrices (m,n € N) with maximal row rank and invariant d,
equals the integer number K(d). .
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The number of nonisomorphic groups G (B), where A varies over all (m, n) integer
matrices (n € N) with rank(B) € {m, n} and invariant d, equals L(d, m).

Notice that K(d) is a finite number, though we consider all (m, n) integer
matrices B with m, n € N. If we compute the numbers K(d) and L(d, m) for d’s
between 1 and 10°, we note that 0 < K(d) < 10 in 95% of the cases, that is the group
G (B) is more or less determined by d = inv(B).

Proof of Proposition (1.7). Two groups are isomorphic iff the generating matrices
are equivalent and the rank condition holds (cf. Remark (1.6)). Proving the first part
of the proposition we have only to deal with maximal row rank matrices and using
Remark (1.4) we can restrict ourselves to square matrices, because hg(x) is defined
in terms of H*(B) and this an (m, n) integer matrix with detH*(B) = inv(B).
Because of the divisibility property of the invariant factors of an (m, m) integer
matrix it suffices now to compute the number of different representations of the
exponents of a prime factor presentation of the determinant d = det B as a sum of
m neonnegative integers. In fact this number equals p(g;, m) (cf. (2)) and moreover
H(d) is finite because

k
£, =Max g;
i=1

leads to

ﬂ p(e, e+ k)=iljp(e,, &) (k EN).

To prove the second part of the proposition we first note that rank (B) < m. Since
two groups G(A) and G(B) with matrices having both less than m columns,
cannot be isomorphic, the second statement follows obviously from the first one.

2. Minimal group representation

We have seen that (1.5) is a group problem, namely of the group G(B). In fact
this is the group which will usually be considered in the asymptotic integer
programming approach (cf. (3)), whereas the actual underlying group of (1.5) is the

group
G(N/B):={hs(x)/x = N\,A EZ'}

which is a subgroup of G(B) generated by the columns of the matrix N. From a
computational point of view the group G (N/B) is more difficult to handle than the
group G(B) (though it has less elements), because there is no proper respresenta-
tion of G(N/B). From this reason here we are going to find a § € N™ which will be
defined in terms of N and B, such that the group G(N/B) is isomorphic to
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G (diag(8)). Clearly this is a minimal group representation of problem (1.5) and as
a corollary we get the order of G(N/B) by

First we want to give some results concerning congruences which will be used
later, they seem to be of general interest, though.

Theorem (2.1). Let B be an (m, n) integer matrix with rank (B)= m, N an (m,s)
integer matrix, b € Z™ and A:= (N, B). The system of congruences
Nx=Nb mod B 4
x integer
has a solution iff S*(A) ™' VaUab is integer. In this case, all solutions are of the form
x=b modH
x integer
where H:=(KuVuWuL,R). Here we denote by L:=S*(A)'UuN, M:=
S*(A) 'U4B and R denotes the last s — k columns of Ky, where k:=rank(N).

Proof. Without loss of generality we set b = 0. It is easy to see that S*(M, L)equals
an (m, m) identity matrix I"™, so we conclude

S(S(M), UyL)=(I",0,..).

With diag(ti,...,%):=S*(M), tc..:=0 (i=1,...,m — k) and D:= UyL we get
immediately

(t) ged(t,d)=1, i=1,..,m,

where di:=ged(D;/j=1,...,n)(i=1,...,m).
Obviously the system

Nx=0 modB
x integer

is equivalent to the system

(S0 0-t)y 2 mod L
m—k.k

y integer,
and using () it is also equivalent to
(S*(M),0,...)y =0 mod W,,UyL.

y integer.
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Let y =(y1,y:) be a (k, s — k) partition of y, then we get
S*(M)y, =0 mod W, UwnL.
Y1, Y2 integer.

Let Ki(i=1,...,k) be unimodular matrices, which transform the ith row of
D:=W, UyL into (d,0,...,0). Using

E:=K, diag(1,...,1,¢t:",1,.. ,1)K;"

i=1,...,m we define

1
E:=]] E.
i=k
By induction on i one can easily show that

1
diag(1,.. ., tir,.. o tn)y1 = D[] Ez

i=i
1
Y2, n E,;z integer
j=i

is equivalent (for all i=1,...,m) to
(*) S*(M)y,=0 modB

Y1, y2 integer
so that

yi = DEz

y2, Ez integer

is equivalent to (*).
Since E~' is an integer matrix and x = Ky, the equation

X = (KMVMyl + Ryz)
completes the proof.
Theorem (2.2). With the notations of theorem (2.1) we get
(i) S*(LY=S(A)'U.U3'S*(B)
(i) S*(H)=I""*+diag(tm—r+1r. - tm)
where S*(L)=:diag(t,,...,t).
Proof. Because of
L = S*(A )Al UAUBl UBB,
(i) follows immediately from the equation

S*(L)=S*(LKas) = S*(LK5Va).
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Let
Ok.s—
P:= (Ik;~kk>

where I'™* denotes an ((s —k),(s — k)) identity matrix. Because of H =
Ku(WuUML, P), we conclude S*(H) = S*(Wy,UwL, P), that is

* — Il_k Os—Lk \
S*(H )_<0k,,-.‘ s*(QL)/

where Q denotes the first k rows of Uw.
From the proof of theorem (2.1) we know that

S*(L)=S*(H(UmL))=diag(ts,..., 1),
SO
S*(QL)=diag(tm-k+1s- -« tm)

which completes the proof.

Now we are able to give an isomorphic representation of the subgroup G(N/B).

Theorem (2.3). Let B be an (m,n) and N an (m, r) integer matrix with rank(B) =
m. Then we get

G(N/B)= G(S*(E)),

that means the group G(N/B) is isomorphic to the group G(S*(E)), where E:=
WM UML and L:=S*(N,B)_|U(N‘B)N, M:=S*(N,B)_lU(N_B)B.

Corollary (2.4).
0O := U S*(M) 'WpnUnm S*(N, B) 'Uns)
is an isomorphism from G(N/B) to G(S*(E)).

Corollary (2.5). The order of G(N/B) equals
inv(B

det(S*(N, B))"

Proof of Theorem (2.3). Let K be a unimodular matrix, so that NK is up to
permutations of rows in Hermite normal form. Let N be the matrix NK without the
zero columns. Obviously we have G(N/B)= G(N/B). Let

{N}:={x€Z" |x=Ny fora y€Z)}

be a subgroup of (Z™, +). Because hz : {N}— hs({N}) is a homomorphism (Propo-
sition 1.3) G(N/B) is isomorphic to the factor group



8 A. Bachem

{N}/kernel (hs)

where kernel(hs) = {x € {N} | x =0 mod B}.
With Theorem (2.1) we conclude

kernel(hg)={x € Z" Ix = Ny, y =0 mod Ky, Wy UyLfor a y € Z*}.

Let

fi=S*(M)"'W, UyBL™".
Then

f:{N}—>Z*

is an isomorphism and f(kernel (hs)) = {z € Z* l z =0mod Wy,UuL}. Thus we get
{N}/kernel(hs) = Z* /kernel (he)

and because Ug is also an isomorphism we get the isomorphism
G(N/B) = G(S*(E)).

The corollaries follow immediately from Theorem (2.3) in conjunction with
Theorem (2.2).

3. Partitioning of integer programs over cones

The computational effort to solve the problem

min c¢'x
st. Nx + By =b (3.1)
xEN,yeEZ"

usually grows rapidly according to the determinant of B. It is therefore sometimes
advantageous to decompose the problem into smaller subproblems and to link the
optima of the subproblems to a solution of the masterproblem. We give now two
examples of decomposing problem (3.1) in case the matrix N is of the form

N, 0
N=| N, : (3.2)
0 N,
or
F Rayion s sues LA
N] bO
. b
N = . p={ (3.3)
bl
[ 0 N, |
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To simplify notation let B =S*(B),i.e. B is given as a diagonal matrix. (Otherwise
we have to impose some special structure on Usg.)
Let us denote the set of feasible solutions of problem (3.1) by

SG(N, b/B):={x €N"| Nx — b € kernel (hs)}.

Let N be an (m, r) integer matrix of form (3.2), let bi(x):=hs(b — N;x);, where I;
corresponds to the row indices of the submatrix N; and let us denote by

o if b.()’)E G(N. /BI.)’

z(bi(y)):= {min Cix,
: x ESG(N, bi(y)/B;) otherwise,
the optimal value of the subproblems.

Proposition (3.4). The programs
minc'x
x ESG(N, b/B), 3.5)
min ¢,y + Zz z(bi(y))
yEN (3.6)

are equivalent.

Proof. Let ri(y) be the minimard corresponding to the optimal value z (b;(y)). Let y
be optimal in (3.6) and assume that there is an X €&SG(N,b/B),
(X# x:=(y,r2(y),...,r.(y)) such that ¢'x <c'x.

Let %:=(yi, X2,...,% ), where y, are the components corresponding to N,.
Because X; are feasible, we get

ciXi= mincx; =c'x; i=2,...,r
x, €SG(N, bi(y:)/By,)
and the contradiction
¢'% = cufy +22 i = min{c;y + 22 2(b(y)|y EN}

proves one part of the proposition, however the reverse direction is trivial.
Let again N be an (m,r) integer matrix which has form (3.3) and define
zi(x2, ..., X, ):=minc,x,

wesa| () (73) /=

Zi(Xi .. X, )i=mincxi + zioy(Xiy ..., X, )
x.'ESG(M,b;/B,‘), i=2,...,r,

as the optimal value of the subproblems.



