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Preface

The 8th International Conference on Theory and Applications of Satisfiability
Testing (SAT 2005) provided an international forum for the most recent research
on the satisfiablity problem (SAT).

SAT is the classic problem of determining whether or not a propositional
formula has a satisfying truth assignment. It was the first problem shown by
Cook to be NP-complete. Despite its seemingly specialized nature, satisfiability
testing has proved to extremely useful in a wide range of different disciplines,
both from a practical as well as from a theoretical point of view. For example,
work on SAT continues to provide insight into various fundamental problems in
computation, and SAT solving technology has advanced to the point where it
has become the most effective way of solving a number of practical problems.

The SAT series of conferences are multidisciplinary conferences intended to
bring together researchers from various disciplines who are interested in SAT.
Topics of interest include, but are not limited to: proof systems and proof com-
plexity; search algorithms and heuristics; analysis of algorithms; theories beyond
the propositional; hard instances and random formulae; problem encodings; in-
dustrial applications; solvers and other tools.

This volume contains the papers accepted for presentation at SAT 2005. The
conference attracted a record number of 73 submissions. Of these, 26 papers
were accepted for presentation in the technical programme. In addition, 16 pa-
pers were accepted as shorter papers and were presented as posters during the
technical programme. The accepted papers and poster papers cover the full range
of topics listed in the call for papers.

We would like to thank a number of people and organizations: Ian Miguel,
the Local Chair who helped us organize the conference remotely; our generous
sponsors who helped us to keep costs down, especially for students; Daniel Le
Berre and Laurent Simon for once again organizing the SAT Solver Competition;
and Massimo Narizzano and Armando Tacchella for the QBF Solver Evaluation.
We would also like to thank the members of the Programme Committee and the
additional referees who contributed in the paper-reviewing process.

St Andrews Fahiem Bacchus, Toby Walsh
June 2005
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Solving Over-Constrained Problems with
SAT Technology™*

Josep Argelich! and Felip Many&?

! Computer Science Department, Universitat de Lleida,
Jaume II, 69, E-25001 Lleida, Spain
josepQeup.udl.es
2 Artificial Intelligence Research Institute (IIIA-CSIC),
Campus UAB, 08193 Bellaterra, Spain

felip@iiia.csic.es

Abstract. We present a new generic problem solving approach for over-
constrained problems based on Max-SAT. We first define a clausal form
formalism that deals with blocks of clauses instead of individual clauses,
and that allows one to declare each block either as hard (i.e., must be
satisfled by any solution) or soft (i.e., can be violated by some solu-
tion). We then present two Max-SAT solvers that find a truth assignment
that satisfies all the hard blocks of clauses and the maximum number
of soft blocks of clauses. Our solvers are branch and bound algorithms
equipped with original lazy data structures; the first one incorporates
static variable selection heuristics while the second one incorporates dy-
namic variable selection heuristics. Finally, we present an experimental
investigation to assess the performance of our approach on a representa-
tive sample of instances (random 2-SAT, Max-CSP, and graph coloring).

1 Introduction

The SAT-based problem solving approach presents some limitations when solv-
ing many real-life problems due to the fact that it only provides a solution when
the formula that models the problem we are trying to solve is shown to be sat-
isfiable. Nevertheless, in many combinatorial problems, some potential solutions
could be acceptable even when they violate some constraints. If these violated
constraints are ignored, solutions of bad quality are found, and if they are treated
as mandatory, problems become unsolvable. This is our motivation to extend the
SAT formalism to solve over-constrained problems. In such problems, the goal
is to find the solution that best respects the constraints of the problem.

In this paper we will consider that all the constraints are crisp (i.e., they
are either completely satisfied or completely violated), but constraints can be

* Research partially supported by projects TIN2004-07933-C03-03 and TIC2003-00950
funded by the Ministerio de Educacidn y Ciencia. The second author is supported
by a grant Ramdn y Cajal.

F. Bacchus and T. Walsh (Eds.): SAT 2005, LNCS 3569, pp. 1-15, 2005.
© Springer-Verlag Berlin Heidelberg 2005



2 J. Argelich and F. Manya

either hard (i.e., must be satisfied by any solution) or soft (i.e., can be violated
by some solution). A solution best respects the constraints of the problem if it
satisfies all the hard constraints and the maximum number of soft constraints. In
the literature of over-constrained problems, fuzzy constraints (i.e., intermediate
degrees of satisfaction are allowed), as well as other ways of defining that a
solution best respects the constraints of the problem, are considered. We invite
the reader to consult [12] for a recent survey on different CSP approaches to
solving over-constrained problems.

Given a combinatorial problem which can be naturally defined by a set of
constraints over finite-domain variables, we have that each constraint is often
encoded as a set (block) of Boolean clauses in such a way that a constraint
is satisfiable if all those clauses are satisfied by some truth assignment and is
violated if at least one of those clauses is not satisfied by any truth assign-
ment. Thus, in contrast to the usual approach, the concept of satisfaction in
SAT-encoded over-constrained problems refers to blocks of clauses instead of in-
dividual clauses. This led in turn to design Max-SAT-like solvers that deal with
blocks of clauses instead of individual clauses, and exploit the new structure of
the encodings.

In this paper we present a new generic problem solving approach for over-
constrained problems based on Max-SAT. We first define a clausal form formal-
ism that deals with blocks of clauses instead of individual clauses, and that allows
one to declare each block either as hard (i.e., must be satisfied by any solution)
or soft (i.e., can be violated by some solution). We call soft CNF formulas to this
new kind of formulas. We then present two Max-SAT solvers that find a truth
assignment that satisfies all the hard blocks of clauses and the maximum number
of soft blocks of clauses. Our solvers are branch and bound algorithms equipped
with original lazy data structures; the first one incorporates static variable se-
lection heuristics while the second one incorporates dynamic variable selection
heuristics. Finally, we present an experimental investigation to assess the perfor-
mance of our approach on a representative sample of instances (random 2-SAT,
Max-CSP, and graph coloring).

Problem solving of over-constrained problems with Max-SAT local search
algorithms has been investigated before in [8,4]. In that case, the authors dis-
tinguish between hard and soft constraints at the clause level, but they do not
incorporate the notion of blocks of hard and soft clauses. The notion of blocks of
clauses provides a more natural way of encoding soft constraints. Besides, to the
best of our knowledge, the treatment of soft constraints with exact Max-SAT
solvers has not been considered before.

The paper is structured as follows. In Section 2 we introduce the formalism
of soft CNF formulas. In Section 3 we describe a solver for soft CNF formulas
with static variable selection heuristics. In Section 4 we describe a solver for soft
CNF formulas with dynamic variable selection heuristics. In Section 5 we report
the experimental investigation we performed to assess the performance of our
formalism and solvers. Finally, we present some concluding remarks.
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2 Soft CNF Formulas

We define the syntax and semantics of soft CNF formulas, which are an extension
of Boolean clausal forms that we use to encode over-constrained problems.

Definition 1. A soft CNF formula is formed by a set of pairs (clause, label),
where clause is a Boolean clause and label is either h; or s; for somei € N. A
hard block of a soft CNF formula is formed by all the pairs (clause,label) with
the same label h;, and a soft block is formed by all the pairs (clause,label) with
the same label s;.

All the clauses with the same label h; (s;) model the same hard (soft) con-
straint.

Definition 2. A truth assignment satisfies a hard block of a soft CNF' formula
if it satisfies all the clauses of the block. A truth assignment satisfies a soft
CNF formula ¢ if it satisfies all the hard blocks of ¢. We say then that ¢ is
satisfiable. A soft CNF formula ¢ is unsatisfiable if there is no truth assignment
that satisfies all the the hard blocks of ¢. A truth assignment satisfies a soft block
if it satisfies all the clauses of the block. A truth assignment is a solution to a soft
CNF formula ¢ if it satisfies all the hard blocks of ¢ and the mazimum number
of soft blocks.

Definition 3. The Soft-SAT problem is the problem of finding a solution to a
Soft CNF formula.

Ezample 1. We want to solve the problem of coloring a graph with two colors
in such a way that the minimum number of adjacent vertices are colored with
the same color. If we consider the graph with vertices {v;, vs,v3} and with edges
{(v1,v2), (v1,v3), (v2,v3)}, that problem is encoded as a Soft-SAT instance as
follows: (i) the set of prop081t10nal variables is {v}, v?, v3,v2, v, v2}; the intended
meaning of variable v} is that vertex v; is colored with color j; (ii) there is one
hard black formed by the following at-least-one and at-most-one clauses:

(U% V'Uihl)v(ﬂv{ vﬂv%ahl)’(’ué VU%hl)v(ﬁv% V_‘vgvhl)v(vé vavhl)?(—‘vé V_'vg’hl);

and (iii) there is a soft block for every edge:

(-viv —|v2,31), (ﬂ ﬂUZ,sl)
(_‘Ul _‘Uzv 52), (" _’Usv s2),
(“’U2 _‘U3’ s3), (ﬁvz "Us, $3).

The use of blocks is relevant for two reasons. On the one hand, it provides to
the user information in a more natural way about constraint violations. On the
other hand, it allows us to get more propagation at certain nodes (this point is
discusses in the next section). Besides, the structure of blocks will be important
when we extend our formalism to deal with fuzzy constraints.
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3 Soft-SAT-S: A Solver with Static Variable Selection
Heuristic

The space of all possible assignments for a soft CNF formula ¢ can be represented
as a search tree, where internal nodes represent partial assignments and leaf
nodes represent complete assignments. The branch and bound algorithm for
solving the Max-SAT problem of soft CNF formulas with static variable selection
heuristics that we have designed and implemented, called Soft-SAT-S, explores
that search tree in a depth-first manner. At each node, the algorithm backtracks
if the current partial assignment violates some clause of the hard blocks, and
applies the one-literal rule! to the literals that occur in unit clauses of hard
blocks.? If the current partial assignment does not violate any clause of the
hard blocks, the algorithm compares the number of soft blocks unsatisfied by
the best complete assignment found so far, called upper bound (ub), with the
number of soft blocks unsatisfied by the current partial assignment, called lower
bound (Ib). Obviously, if ub < lb, a better assignment cannot be found from this
point in search. In that case, the algorithm prunes the subtree below the current
node and backtracks to a higher level in the search tree. If ub > b, it extends the
current partial assignment by instantiating one more variable, say p, which leads
to create two branches from the current branch: the left branch corresponds to
instantiate p to false, and the right branch corresponds to instantiate p to true.
In that case, the formula associated with the left (right) branch is obtained from
the formula of the current node by applying the one-literal rule [11] using the
literal —p (p). The value that ub takes after exploring the entire search tree
is the minimum number of soft blocks that cannot be satisfied by a complete
assignment. :

In branch and bound Max-SAT algorithms like [2,17], the lower bound is
the sum of the number of unsatisfied clauses by the current partial assignment
plus an underestimation of the number of clauses that will become unsatisfied
if we extend the current partial assignment into a complete assignment, which
is calculated taking into account the inconsistency counts of the variables not
yet instantiated. The concept of inconsistency counts cannot be easily extended
to soft blocks® and our lower bound is not so powerful as the lower bounds
of [2,15,17,18]. In Soft-SAT-S, like in [2, 17], the initial lower bound is obtained
with a GSAT-like [14] local search algorithm.

In Section 5 we define the notion of inconsistency counts for SAT encoded
Max-CSP and graph coloring instances by exploiting the structure hidden in
the encoding, and we are able to define a lower bound that incorporates an

! Given a literal —p (p), the one-literal rule [11] deletes all the clauses containing the
literal —p (p) and removes all the occurrences of the literal p (—p).

% Observe that this pruning technique cannot be applied to exact Max-SAT solvers
that deal with individual clauses; in Max-SAT solvers each clause can be viewed as
a soft block.

3 This is due to the fact that a block is unsatisfied by an interpretation I when I does
not satisfy one clause of the block.
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underestimation of the number of soft blocks that will become unsatisfied if we
extend the current partial assignment into a complete assignment.

When branching is done, algorithms for Max-SAT like [2,17,3] apply the
one-literal rule (simplifying with the branching literal) instead of applying unit
propagation (i.e., the repeated application of the one-literal rule until a satura-
tion state is reached) as in the Davis-Putnam-style [6] solvers for SAT. If unit
propagation is applied at each node, the algorithm can return a non-optimal
solution. For example, if we apply unit propagation to {p,—~¢,—pV ¢, —p} using
the unit clause —p, we derive one empty clause while if we use the unit clause
p, we derive two empty clauses. However, when the difference between the lower
bound and the upper bound is one, unit propagation can be safely applied, be-
cause otherwise by fixing to false any literal of any unit clause we reach the
upper bound. Soft-SAT-S performs unit propagation in that case too. Moreover,
as pointed out before, Soft-SAT-S applies the one-literal rule when a clause of
a hard block becomes unit. This propagation, which leads to substantial perfor-
mance improvements, cannot be safely applied in Max-SAT solvers like (2,17, 3],
and is a key feature of our approach.

Our current version of Soft-SAT-S incorporates two static variable selection
heuristics:

— MO: We instantiate first the variables that appears Most Often (MO). Ties
are broken using the lexicographical order.

— csp: In SAT encodings that model CSP variables, each CSP variable with
a domain of size k is represented by a set of k Boolean variables z1, ..., zx.
We associate a weight to each one of these sets: the sum of the total number
of occurrences of each variable of the set. We order the sets according to
such weight. Heuristic csp instantiates, first and in lexicographical order, the
Boolean variables of the set with the highest weight. Then, it instantiates, in
lexicographical order, the Boolean variables of the set with the second highest
weight, and so on. This heuristic is used, in the experimental investigation, to
solve problems with finite-domain variables (Max-CSP and graph coloring).
The idea behind this heuristic is to instantiate first the CSP variables that
occur most often. This way, we emulate an n-ary CSP branching by means
of a binary branching (i.e., we consider all the possible values of the CSP
variable under consideration before instantiating another CSP variable). As
we will see in the experiments, we get some performance improvements for
the fact of dealing with n-ary branchings.

The fact of using static variable selection heuristics allows us to implement
extremely efficient data structures for representing and manipulating soft CNF
formulas. Our data structures take into account the following fact: we are only
interested in knowing when a clause has become unit or empty. Thus, if we have a
clause with four variables, we do not perform any operation in that clause until
three of the variables appearing in the clause have been instantiated; i.e., we
delay the evaluation of a clause with k variables until £ — 1 variables have been
instantiated. In our case, as we instantiate the variables using a static order, we
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do not have to evaluate a clause until the penultimate variable of the clause in
the static order has been instantiated.

The data structures are defined as follows: For each clause we have a pointer
to the penultimate variable of the clause in the static order, and the clauses of
a soft CNF formula are ordered by that pointer. We also have a pointer to the
last variable of the clause. When a variable p is fixed to true (false), only the
clauses whose penultimate variable in the static order is —p (p) are evaluated.
This approach has two advantages: the cost of backtracking is constant (we do
not have to undo pointers like in adjacency lists) and, at each step, we evaluate
a minimum number of clauses.

4 Soft-SAT-D: A Solver with Dynamic Variable Selection
Heuristic

The second solver we have designed and implemented is Soft-SAT-D, which is like
Soft-SAT-S except for the fact that its variable selection heuristics are dynamic.
This fact, in turn, did not allow us to implement the data structures we have
described in the previous section. The data structures implemented in Soft-SAT-
D are the two-watched literal data structures of Chaff [13]. They are also lazy
data structures, but are not so efficient because here we need to maintain the
watched literals.

Our current version of Soft-SAT-D incorporates two dynamic variable selec-
tion heuristics:

— MO: We instantiate first the variables that appears Most Often (MO). Ties
are broken using the lexicographical order. Observe that we do not use the
variable that appears most often in minimum size clauses (heuristic MOMS)
because this is difficult to know with the lazy data structures of Chaff. How-
ever, most of the instances we used in the experimental investigation contain
a big amount of binary clauses.

— MO-csp: This is the dynamic version of heuristic csp of Soft-SAT-S. We
associate a weight to each set of free Boolean variables that encode a same
CSP variable: the sum of the total number of occurrences of each variable of
the set that has not been yet instantiated. We select the set with the highest
weight and instantiate its variables in lexicographical order. Like in heuristic
csp, we emulate an n-ary branching.

5 Experimental Investigation

We next report the experimental investigation we conducted to evaluate the per-
formance of our problem solving approach. All the experiments were performed
on a 2GHz Pentium IV with 512 Mb of RAM under Linux.

We performed experiments with ssoft-SAT solvers as well as with weighted
Max-SAT solvers and a Max-CSP solver [10]. The solvers used are the following
ones:



