Fahiem Bacchus
Toby Walsh (Eds.)

Theory and Applications
of Satisfiability Testing

8th International Conference, SAT 2005
St Andrews, UK, June 2005
Proceedings

LNCS 3569

@ Springer

Fahiem Bacchus Toby Walsh (Eds.)

Theory and Applications
of Satisfiability Testing

8th International Conference, SAT 2005
St Andrews, UK, June 19-23, 2005
Proceedings

@ Springer

Volume Editors

Fahiem Bacchus

University of Toronto, Department of Computer Science

6 King’s College Road, Toronto, Ontario, M5S 3HS5, Canada
E-mail: fbacchus@cs.toronto.edu

Toby Walsh

National ICT Australia and University of New South Wales
School of Computer Science and Engineering

Sydney 2502, Australia

E-mail: tw@cse.unsw.edu.au

Library of Congress Control Number: 2005927321

CR Subject Classification (1998): F.4.1,1.2.3,1.2.8, 1.2, F2.2, G.1.6

ISSN 0302-9743
ISBN-10 3-540-26276-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-26276-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11499107 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3569

Preface

The 8th International Conference on Theory and Applications of Satisfiability
Testing (SAT 2005) provided an international forum for the most recent research
on the satisfiablity problem (SAT).

SAT is the classic problem of determining whether or not a propositional
formula has a satisfying truth assignment. It was the first problem shown by
Cook to be NP-complete. Despite its seemingly specialized nature, satisfiability
testing has proved to extremely useful in a wide range of different disciplines,
both from a practical as well as from a theoretical point of view. For example,
work on SAT continues to provide insight into various fundamental problems in
computation, and SAT solving technology has advanced to the point where it
has become the most effective way of solving a number of practical problems.

The SAT series of conferences are multidisciplinary conferences intended to
bring together researchers from various disciplines who are interested in SAT.
Topics of interest include, but are not limited to: proof systems and proof com-
plexity; search algorithms and heuristics; analysis of algorithms; theories beyond
the propositional; hard instances and random formulae; problem encodings; in-
dustrial applications; solvers and other tools.

This volume contains the papers accepted for presentation at SAT 2005. The
conference attracted a record number of 73 submissions. Of these, 26 papers
were accepted for presentation in the technical programme. In addition, 16 pa-
pers were accepted as shorter papers and were presented as posters during the
technical programme. The accepted papers and poster papers cover the full range
of topics listed in the call for papers.

We would like to thank a number of people and organizations: Ian Miguel,
the Local Chair who helped us organize the conference remotely; our generous
sponsors who helped us to keep costs down, especially for students; Daniel Le
Berre and Laurent Simon for once again organizing the SAT Solver Competition;
and Massimo Narizzano and Armando Tacchella for the QBF Solver Evaluation.
We would also like to thank the members of the Programme Committee and the
additional referees who contributed in the paper-reviewing process.

St Andrews Fahiem Bacchus, Toby Walsh
June 2005

Organization

Conference Organization

Conference Chairs: Fahiem Bacchus (University of Toronto, Canada)
Toby Walsh (National ICT Australia

Local Chair:

Programme Committee

Dimitris Achlioptas
Fadi Aloul

Clark Barrett
Constantinos Bartzis
Paul Beame

Armin Biere
Ronen Brafman
Alessandro Cimatti
Adnan Darwiche
Alvaro del Val
Enrico Giunchiglia
Eugene Goldberg

Sponsors

Cadence Design Systems

Intel Corporation

Intelligence Information Systems Institute, Cornell

Microsoft Research

Ziyad Hanna
Edward Hirsch
Henry Kautz
Eleftherios Kirousis
Hans Kleine Biining
Daniel Le Berre
Chu-Min Li
Fangzhen Lin
Sharad Malik

Jodo Marques-Silva
Ilkka Niemela,
Toniann Pitassi

CoLogNet Network of Excellence

Additional Referees

Zaher S. Andraus
Pierre Bonami
Uwe Bubeck

Yin Chen

Sylvie Coste-Marquis

Nadia Creignou
Stefan Dantchev
Sylvain Darras

and University of NSW, Australia)
Ian Miguel (University of St Andrews, UK)

Steve Prestwich
Jussi Rintanen
Lakhdar Sais
Karem Sakallah
Laurent Simon
Stefan Szeider
Mirek Truszczynski
Allen Van Gelder
Hans van Maaren
Lintao Zhang

Gilles Dequen
Laure Devendeville
Niklas Een

Malay K. Ganai

VIII Organization

Aarti Gupta
Jean-Luc Guerin
Keijo Heljanko
Jinbo Huang
Dmitry Itsyson
Matti Jarvisalo
Tommi Junttila
Bernard Jurkowiak
Zurab Khasidashvili
Arist Kojevnikov
Ioannis Koutis

Alexander Kulikov
Oliver Kullman
Theodor Lettmann
Lengning Liu

Ines Lynce

Yogesh Mahajan
Marco Maratea
Victor Marek
Bertrand Mazure
Maher N. Mneimneh
Alexander Nadel

Massimo Narizzano
Sergey Nikolenko
Nishant Ninha
Thomas Schiex
Armando Tacchella
Muralidhar Talupur
Daijue Tang

Yinlei Yu

Table of Contents

Preface

Solving Over-Constrained Problems with SAT Technology
Josep Argelich, Felip Manyacooviiiiiiiiiiiinneiinnn. 1

A Symbolic Search Based Approach for Quantified Boolean Formulas
Gilles Audemard, Lakhdar Saiso uiiniiiiainnen.. 16

Substitutional Definition of Satisfiability in Classical Propositional Logic
Anton Belov, Zbigniew Stachniakt 31

A Clause-Based Heuristic for SAT Solvers
Nachum Dershowitz, Ziyad Hanna, Alexander Nadel 46

Effective Preprocessing in SAT Through Variable and Clause

Elimination
Niklas Fren, Armin Biere . c:saissnswssnsmssseas sosmasssdsssssies 61

Resolution and Pebbling Games
Nicola Galesi, Neil Thapen, 76

Local and Global Complete Solution Learning Methods for QBF
Ian P. Gent, Andrew G.D. Rowleyc.ccuiiiiiiinein.. 91

Equivalence Checking of Circuits with Parameterized Specifications
FEugene Goldberg 107

Observed Lower Bounds for Random 3-SAT Phase Transition Density
Using Linear Programming
Marijn Heule, Hans van Maarencouiuuieunenn... 122

Simulating Cutting Plane Proofs with Restricted Degree of Falsity by

Resolution
Edward A. Hirsch, Sergey I. Nikolenko 135

Resolution Tunnels for Improved SAT Solver Performance
Michal Kouril, John Franco iiiiiiiiiiniiunnnin. 143

Diversification and Determinism in Local Search for Satisfiability
Chu Min Li, Wen Qi Huangcoeuuuieuueeunaenunan.. 158

X Table of contents

On Finding All Minimally Unsatisfiable Subformulas
Mark H. Liffiton, Karem A. Sakallah 173

Optimizations for Compiling Declarative Models into Boolean Formulas
Darko Marinov, Sarfraz Khurshid, Suhabe Bugrara, Lintao Zhang,
Mortin Rinmord . cvso5 snis smems smvims imienimsmmios i0sms pmins gmses 187

Random Walk with Continuously Smoothed Variable Weights
Steven Prestwicho 203

Derandomization of PPSZ for Unique-k-SAT
Baniel Bolf «oswmsms susms sssms smsms igins imsmfiosmfuieosmssnins 216

Heuristics for Fast Exact Model Counting
Tian Sang, Paul Beame, Henry Kautzo, 226

A Scalable Method for Solving Satisfiability of Integer Linear
Arithmetic Logic
Hossein M. Sheini, Karem A. Sakallah 241

DPvis - A Tool to Visualize the Structure of SAT Instances
Carsten Sinz, Edda-Maria Dieringerc.ciueuiieennunn. 257

Constraint Metrics for Local Search
Finnegan Southey i e e 269

Input Distance and Lower Bounds for Propositional Resolution Proof
Length
Allen Van Gelder o e 282

Sums of Squares, Satisfiability and Maximum Satisfiability
Hans van Maaren, Linda van Nordencccouuiunon .. 294

Faster Exact Solving of SAT Formulae with a Low Number of
Occurrences per Variable
Magnus Wahlstromot 309

A New Approach to Model Counting
Wei Wei, Bart Selman 324

Benchmarking SAT Solvers for Bounded Model Checking
Emmanuel Zarpas 340

Model-Equivalent Reductions
Xishun Zhao, Hans Kleine BUningccuuiiueiinneennn.. 355

Table of Contents XI

Improved Exact Solvers for Weighted Max-SAT
Teresa Alsinet, Felip Manya, Jordi Planes 371

Quantifier Trees for QBF's
Marco Benedettiun oo e 378

Quantifier Rewriting and Equivalence Models for Quantified Horn

Formulas
Uwe Bubeck, Hans Kleine Bining, Xishun Zhao 386

A Branching Heuristics for Quantified Renamable Horn Formulas
Sylvie Coste-Marquis, Daniel Le Berre, Florian Letombe 393

An Improved Upper Bound for SAT
Evgeny Dantsin, Alexander Wolpert, 400

Bounded Model Checking with QBF
Nachum Dershowitz, Ziyad Hanna, Jacob Katz 408

Variable Ordering for Efficient SAT Search by Analyzing
Constraint-Variable Dependencies
Vijay Durairaj, Priyank Kalla uiiiiiiein... 415

Cost-Effective Hyper-Resolution for Preprocessing CNF Formulas
Roman Gershman, Ofer Strichman.........., 423

Automated Generation of Simplification Rules for SAT and MAXSAT
Alezander S. Kultkov s:sisuinsisoimiamsmisnsmssninsisiss ihsss 150 430

Speedup Techniques Utilized in Modern SAT Solvers
Matthew D.T. Lewis, Tobias Schubert, Bernd W. Becker 437

FPGA Logic Synthesis Using Quantified Boolean Satisfiability
Andrew Ling, Deshanand P. Singh, Stephen D. Brown 444

On Applying Cutting Planes in DLL-Based Algorithms for
Pseudo-Boolean Optimization
Vasco Manquinho, Jogo Marques-Silva.cccovueon... 451

A New Set of Algebraic Benchmark Problems for SAT Solvers
Andreas Meier, Volker Sorge iiiiiiiiin.. 459

A Branch-and-Bound Algorithm for Extracting Smallest Minimal
Unsatisfiable Formulas

Maher Mneimneh, Inés Lynce, Zaher Andraus, Jogo Marques-Silva,

Karem Sakallah. 467

XII Table of contents
Threshold Behaviour of WalkSAT and Focused Metropolis Search on
Random 3-Satisfiability
Sakari Seitz, Mikko Alava, Pekka Orponenccou.. 475

On Subsumption Removal and On-the-Fly CNF Simplification
Lintao Zhanguo e e 482

Author Index 491

Solving Over-Constrained Problems with
SAT Technology™*

Josep Argelich! and Felip Many&?

! Computer Science Department, Universitat de Lleida,
Jaume II, 69, E-25001 Lleida, Spain
josepQeup.udl.es
2 Artificial Intelligence Research Institute (IIIA-CSIC),
Campus UAB, 08193 Bellaterra, Spain

felip@iiia.csic.es

Abstract. We present a new generic problem solving approach for over-
constrained problems based on Max-SAT. We first define a clausal form
formalism that deals with blocks of clauses instead of individual clauses,
and that allows one to declare each block either as hard (i.e., must be
satisfled by any solution) or soft (i.e., can be violated by some solu-
tion). We then present two Max-SAT solvers that find a truth assignment
that satisfies all the hard blocks of clauses and the maximum number
of soft blocks of clauses. Our solvers are branch and bound algorithms
equipped with original lazy data structures; the first one incorporates
static variable selection heuristics while the second one incorporates dy-
namic variable selection heuristics. Finally, we present an experimental
investigation to assess the performance of our approach on a representa-
tive sample of instances (random 2-SAT, Max-CSP, and graph coloring).

1 Introduction

The SAT-based problem solving approach presents some limitations when solv-
ing many real-life problems due to the fact that it only provides a solution when
the formula that models the problem we are trying to solve is shown to be sat-
isfiable. Nevertheless, in many combinatorial problems, some potential solutions
could be acceptable even when they violate some constraints. If these violated
constraints are ignored, solutions of bad quality are found, and if they are treated
as mandatory, problems become unsolvable. This is our motivation to extend the
SAT formalism to solve over-constrained problems. In such problems, the goal
is to find the solution that best respects the constraints of the problem.

In this paper we will consider that all the constraints are crisp (i.e., they
are either completely satisfied or completely violated), but constraints can be

* Research partially supported by projects TIN2004-07933-C03-03 and TIC2003-00950
funded by the Ministerio de Educacidn y Ciencia. The second author is supported
by a grant Ramdn y Cajal.

F. Bacchus and T. Walsh (Eds.): SAT 2005, LNCS 3569, pp. 1-15, 2005.
© Springer-Verlag Berlin Heidelberg 2005

2 J. Argelich and F. Manya

either hard (i.e., must be satisfied by any solution) or soft (i.e., can be violated
by some solution). A solution best respects the constraints of the problem if it
satisfies all the hard constraints and the maximum number of soft constraints. In
the literature of over-constrained problems, fuzzy constraints (i.e., intermediate
degrees of satisfaction are allowed), as well as other ways of defining that a
solution best respects the constraints of the problem, are considered. We invite
the reader to consult [12] for a recent survey on different CSP approaches to
solving over-constrained problems.

Given a combinatorial problem which can be naturally defined by a set of
constraints over finite-domain variables, we have that each constraint is often
encoded as a set (block) of Boolean clauses in such a way that a constraint
is satisfiable if all those clauses are satisfied by some truth assignment and is
violated if at least one of those clauses is not satisfied by any truth assign-
ment. Thus, in contrast to the usual approach, the concept of satisfaction in
SAT-encoded over-constrained problems refers to blocks of clauses instead of in-
dividual clauses. This led in turn to design Max-SAT-like solvers that deal with
blocks of clauses instead of individual clauses, and exploit the new structure of
the encodings.

In this paper we present a new generic problem solving approach for over-
constrained problems based on Max-SAT. We first define a clausal form formal-
ism that deals with blocks of clauses instead of individual clauses, and that allows
one to declare each block either as hard (i.e., must be satisfied by any solution)
or soft (i.e., can be violated by some solution). We call soft CNF formulas to this
new kind of formulas. We then present two Max-SAT solvers that find a truth
assignment that satisfies all the hard blocks of clauses and the maximum number
of soft blocks of clauses. Our solvers are branch and bound algorithms equipped
with original lazy data structures; the first one incorporates static variable se-
lection heuristics while the second one incorporates dynamic variable selection
heuristics. Finally, we present an experimental investigation to assess the perfor-
mance of our approach on a representative sample of instances (random 2-SAT,
Max-CSP, and graph coloring).

Problem solving of over-constrained problems with Max-SAT local search
algorithms has been investigated before in [8,4]. In that case, the authors dis-
tinguish between hard and soft constraints at the clause level, but they do not
incorporate the notion of blocks of hard and soft clauses. The notion of blocks of
clauses provides a more natural way of encoding soft constraints. Besides, to the
best of our knowledge, the treatment of soft constraints with exact Max-SAT
solvers has not been considered before.

The paper is structured as follows. In Section 2 we introduce the formalism
of soft CNF formulas. In Section 3 we describe a solver for soft CNF formulas
with static variable selection heuristics. In Section 4 we describe a solver for soft
CNF formulas with dynamic variable selection heuristics. In Section 5 we report
the experimental investigation we performed to assess the performance of our
formalism and solvers. Finally, we present some concluding remarks.

Solving Over-Constrained Problems with SAT Technology 3

2 Soft CNF Formulas

We define the syntax and semantics of soft CNF formulas, which are an extension
of Boolean clausal forms that we use to encode over-constrained problems.

Definition 1. A soft CNF formula is formed by a set of pairs (clause, label),
where clause is a Boolean clause and label is either h; or s; for somei € N. A
hard block of a soft CNF formula is formed by all the pairs (clause,label) with
the same label h;, and a soft block is formed by all the pairs (clause,label) with
the same label s;.

All the clauses with the same label h; (s;) model the same hard (soft) con-
straint.

Definition 2. A truth assignment satisfies a hard block of a soft CNF' formula
if it satisfies all the clauses of the block. A truth assignment satisfies a soft
CNF formula ¢ if it satisfies all the hard blocks of ¢. We say then that ¢ is
satisfiable. A soft CNF formula ¢ is unsatisfiable if there is no truth assignment
that satisfies all the the hard blocks of ¢. A truth assignment satisfies a soft block
if it satisfies all the clauses of the block. A truth assignment is a solution to a soft
CNF formula ¢ if it satisfies all the hard blocks of ¢ and the mazimum number
of soft blocks.

Definition 3. The Soft-SAT problem is the problem of finding a solution to a
Soft CNF formula.

Ezample 1. We want to solve the problem of coloring a graph with two colors
in such a way that the minimum number of adjacent vertices are colored with
the same color. If we consider the graph with vertices {v;, vs,v3} and with edges
{(v1,v2), (v1,v3), (v2,v3)}, that problem is encoded as a Soft-SAT instance as
follows: (i) the set of prop081t10nal variables is {v}, v?, v3,v2, v, v2}; the intended
meaning of variable v} is that vertex v; is colored with color j; (ii) there is one
hard black formed by the following at-least-one and at-most-one clauses:

(U% V'Uihl)v(ﬂv{ vﬂv%ahl)’(’ué VU%hl)v(ﬁv% V_‘vgvhl)v(vé vavhl)?(—‘vé V_'vg’hl);

and (iii) there is a soft block for every edge:

(-viv —|v2,31), (ﬂ ﬂUZ,sl)
(_‘Ul _‘Uzv 52), (" _’Usv s2),
(“’U2 _‘U3’ s3), (ﬁvz "Us, $3).

The use of blocks is relevant for two reasons. On the one hand, it provides to
the user information in a more natural way about constraint violations. On the
other hand, it allows us to get more propagation at certain nodes (this point is
discusses in the next section). Besides, the structure of blocks will be important
when we extend our formalism to deal with fuzzy constraints.

4 J. Argelich and F. Manya

3 Soft-SAT-S: A Solver with Static Variable Selection
Heuristic

The space of all possible assignments for a soft CNF formula ¢ can be represented
as a search tree, where internal nodes represent partial assignments and leaf
nodes represent complete assignments. The branch and bound algorithm for
solving the Max-SAT problem of soft CNF formulas with static variable selection
heuristics that we have designed and implemented, called Soft-SAT-S, explores
that search tree in a depth-first manner. At each node, the algorithm backtracks
if the current partial assignment violates some clause of the hard blocks, and
applies the one-literal rule! to the literals that occur in unit clauses of hard
blocks.? If the current partial assignment does not violate any clause of the
hard blocks, the algorithm compares the number of soft blocks unsatisfied by
the best complete assignment found so far, called upper bound (ub), with the
number of soft blocks unsatisfied by the current partial assignment, called lower
bound (Ib). Obviously, if ub < lb, a better assignment cannot be found from this
point in search. In that case, the algorithm prunes the subtree below the current
node and backtracks to a higher level in the search tree. If ub > b, it extends the
current partial assignment by instantiating one more variable, say p, which leads
to create two branches from the current branch: the left branch corresponds to
instantiate p to false, and the right branch corresponds to instantiate p to true.
In that case, the formula associated with the left (right) branch is obtained from
the formula of the current node by applying the one-literal rule [11] using the
literal —p (p). The value that ub takes after exploring the entire search tree
is the minimum number of soft blocks that cannot be satisfied by a complete
assignment. :

In branch and bound Max-SAT algorithms like [2,17], the lower bound is
the sum of the number of unsatisfied clauses by the current partial assignment
plus an underestimation of the number of clauses that will become unsatisfied
if we extend the current partial assignment into a complete assignment, which
is calculated taking into account the inconsistency counts of the variables not
yet instantiated. The concept of inconsistency counts cannot be easily extended
to soft blocks® and our lower bound is not so powerful as the lower bounds
of [2,15,17,18]. In Soft-SAT-S, like in [2, 17], the initial lower bound is obtained
with a GSAT-like [14] local search algorithm.

In Section 5 we define the notion of inconsistency counts for SAT encoded
Max-CSP and graph coloring instances by exploiting the structure hidden in
the encoding, and we are able to define a lower bound that incorporates an

! Given a literal —p (p), the one-literal rule [11] deletes all the clauses containing the
literal —p (p) and removes all the occurrences of the literal p (—p).

% Observe that this pruning technique cannot be applied to exact Max-SAT solvers
that deal with individual clauses; in Max-SAT solvers each clause can be viewed as
a soft block.

3 This is due to the fact that a block is unsatisfied by an interpretation I when I does
not satisfy one clause of the block.

Solving Over-Constrained Problems with SAT Technology 5

underestimation of the number of soft blocks that will become unsatisfied if we
extend the current partial assignment into a complete assignment.

When branching is done, algorithms for Max-SAT like [2,17,3] apply the
one-literal rule (simplifying with the branching literal) instead of applying unit
propagation (i.e., the repeated application of the one-literal rule until a satura-
tion state is reached) as in the Davis-Putnam-style [6] solvers for SAT. If unit
propagation is applied at each node, the algorithm can return a non-optimal
solution. For example, if we apply unit propagation to {p,—~¢,—pV ¢, —p} using
the unit clause —p, we derive one empty clause while if we use the unit clause
p, we derive two empty clauses. However, when the difference between the lower
bound and the upper bound is one, unit propagation can be safely applied, be-
cause otherwise by fixing to false any literal of any unit clause we reach the
upper bound. Soft-SAT-S performs unit propagation in that case too. Moreover,
as pointed out before, Soft-SAT-S applies the one-literal rule when a clause of
a hard block becomes unit. This propagation, which leads to substantial perfor-
mance improvements, cannot be safely applied in Max-SAT solvers like (2,17, 3],
and is a key feature of our approach.

Our current version of Soft-SAT-S incorporates two static variable selection
heuristics:

— MO: We instantiate first the variables that appears Most Often (MO). Ties
are broken using the lexicographical order.

— csp: In SAT encodings that model CSP variables, each CSP variable with
a domain of size k is represented by a set of k Boolean variables z1, ..., zx.
We associate a weight to each one of these sets: the sum of the total number
of occurrences of each variable of the set. We order the sets according to
such weight. Heuristic csp instantiates, first and in lexicographical order, the
Boolean variables of the set with the highest weight. Then, it instantiates, in
lexicographical order, the Boolean variables of the set with the second highest
weight, and so on. This heuristic is used, in the experimental investigation, to
solve problems with finite-domain variables (Max-CSP and graph coloring).
The idea behind this heuristic is to instantiate first the CSP variables that
occur most often. This way, we emulate an n-ary CSP branching by means
of a binary branching (i.e., we consider all the possible values of the CSP
variable under consideration before instantiating another CSP variable). As
we will see in the experiments, we get some performance improvements for
the fact of dealing with n-ary branchings.

The fact of using static variable selection heuristics allows us to implement
extremely efficient data structures for representing and manipulating soft CNF
formulas. Our data structures take into account the following fact: we are only
interested in knowing when a clause has become unit or empty. Thus, if we have a
clause with four variables, we do not perform any operation in that clause until
three of the variables appearing in the clause have been instantiated; i.e., we
delay the evaluation of a clause with k variables until £ — 1 variables have been
instantiated. In our case, as we instantiate the variables using a static order, we

6 J. Argelich and F. Manya

do not have to evaluate a clause until the penultimate variable of the clause in
the static order has been instantiated.

The data structures are defined as follows: For each clause we have a pointer
to the penultimate variable of the clause in the static order, and the clauses of
a soft CNF formula are ordered by that pointer. We also have a pointer to the
last variable of the clause. When a variable p is fixed to true (false), only the
clauses whose penultimate variable in the static order is —p (p) are evaluated.
This approach has two advantages: the cost of backtracking is constant (we do
not have to undo pointers like in adjacency lists) and, at each step, we evaluate
a minimum number of clauses.

4 Soft-SAT-D: A Solver with Dynamic Variable Selection
Heuristic

The second solver we have designed and implemented is Soft-SAT-D, which is like
Soft-SAT-S except for the fact that its variable selection heuristics are dynamic.
This fact, in turn, did not allow us to implement the data structures we have
described in the previous section. The data structures implemented in Soft-SAT-
D are the two-watched literal data structures of Chaff [13]. They are also lazy
data structures, but are not so efficient because here we need to maintain the
watched literals.

Our current version of Soft-SAT-D incorporates two dynamic variable selec-
tion heuristics:

— MO: We instantiate first the variables that appears Most Often (MO). Ties
are broken using the lexicographical order. Observe that we do not use the
variable that appears most often in minimum size clauses (heuristic MOMS)
because this is difficult to know with the lazy data structures of Chaff. How-
ever, most of the instances we used in the experimental investigation contain
a big amount of binary clauses.

— MO-csp: This is the dynamic version of heuristic csp of Soft-SAT-S. We
associate a weight to each set of free Boolean variables that encode a same
CSP variable: the sum of the total number of occurrences of each variable of
the set that has not been yet instantiated. We select the set with the highest
weight and instantiate its variables in lexicographical order. Like in heuristic
csp, we emulate an n-ary branching.

5 Experimental Investigation

We next report the experimental investigation we conducted to evaluate the per-
formance of our problem solving approach. All the experiments were performed
on a 2GHz Pentium IV with 512 Mb of RAM under Linux.

We performed experiments with ssoft-SAT solvers as well as with weighted
Max-SAT solvers and a Max-CSP solver [10]. The solvers used are the following
ones:

