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To Marlene and Esteban



Foreword

I met Henri Anciaux in 2000, at a time when I was reading an interesting
paper where he solved partially a conjecture of Yong-Geun Oh. Since that
time I have followed his scientific development and I have observed his skills
to make his results more understandable by illustrating them with many
examples.

In my opinion this book is a consequence of his particular vision of
geometry. It also fills a long-standing gap, because many texts of pseudo-
Riemannian geometry make use of physics to approach their topics, which
sometimes implies that to learn basic concepts is a hard job for graduate
students.

The introduction to pseudo-Riemannian and pseudo-Kéhler geometries
is enjoyable and easy to follow. The treatment made by the author about
minimal, complex and Lagrangian submanifolds is clear and it will be useful
for young researchers interested in these topics. The great quantity of
examples not only helps to make clear the theory, but also allows an easier
comprehension and a pleasant approach to the topic.

F. Urbano
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Preface

About 1755, the Turinese mathematician Lagrange derived the differential
equation that a function satisfies when its graph minimizes the area among
all surfaces with the same boundary. This achievement may be considered
as the birth of the theory of minimal submanifolds, although Euler had dis-
covered a few years before the first non-planar example of minimal surface,
the catenoid. This is a surface of revolution (actually the only non-planar,
minimal one) which owes its name to the fact that its generating curve is the
catenary, the curve obtained by hanging freely a chain with uniform weight.
The next step was taken by Meusnier who gave a geometric characterization
of the minimal surface equation: the sum of the two principal curvatures
of the surface vanishes at any point. He also re-discovered the catenoid!
and did discover the helicoid, the surface made up by the trajectory of a
straight line subject to a helical motion.

Since then this subject has been enjoying an enduring —although not at
a constant rate— development until today. It has become an important one,
with connections not only with the analysis of partial differential equations,
but more surprisingly with complex analysis and even algebraic geometry,
and has received contributions of major mathematicians, such as Poisson,
Riemann, Weierstrass, Calabi... to name a few. While even some problems
regarding the original setting, i.e. two-dimensional surfaces in Euclidean
three-dimensional space, have proved hard to handle (to give an example,
it was proved only in 2005 that the only non-planar minimal surface of
Euclidean three-dimensional space which is embedded, complete and sim-
ply connected is the helicoid, see [Meeks, Rosenberg (2005)]), the theory
has been generalized in several directions: instead of surfaces of Euclidean
three-dimensional space, one can consider higher dimensional submanifolds,

!In those times free of ” publish or perish” ideology, successive discoveries were frequent.

ix



x Minimal submanifolds in pseudo-Riemannian geometry

and replace the multi-dimensional Euclidean space by an arbitrary Rieman-
nian manifold. Ultimately, one may observe that the assumption that the
metric tensor is positive is unnecessary for most of the aspects of the topic,
and that it can be dropped: the most general framework in which to address
the study of minimal submanifolds is therefore that of pseudo-Riemannian
geometry?.

Although there is a huge literature on Riemannian geometry, and in par-
ticular on the theory of minimal submanifolds (without intending to be com-
plete, we refer to [Osserman (1969)], [Chen (1973)], [Spivak (1979)], [Nitsche
(1989)], [do Carmo (1992)], [Xin (2003)]), there are not many books about
pseudo-Riemannian geometry, and those we know are focused on global
analysis and/or physical applications rather than submanifold theory (see
[O’Neill (1983)], [Kriele (1999)], [Palomo, Romero (2006)], [Alekseevsky,
Baum (2008)]). The purpose of this book is twofold. We first give a basic
introduction to the theory of minimal submanifolds, set from the begin-
ning in the pseudo-Riemannian framework. This includes the important
first variation formula, i.e. the generalization of Meusnier observation stat-
ing that a minimal submanifold has vanishing mean curvature vector. Our
second aim is to present a selection of important results, ranging from clas-
sical ones, suitably generalized to the pseudo-Riemannian case (such as the
Weierstrass representation, the classification of ruled minimal surfaces and
the minimality of complex submanifolds) to more elaborate ones, includ-
ing the classification of equivariant minimal hypersurfaces and a detailed
study of Lagrangian submanifolds. It is hoped that this book, despite its
imperfections, will be useful for graduate and postgraduate students, and
researchers interested in this growing, exciting field.

The text is organized as follows: The first chapter provides a set of
definitions and facts about pseudo-Riemannian geometry and submanifold
theory, ending with the proof of the first variation formula. We only as-
sume from the reader some knowledge of basic manifold theory (includ-
ing the notion of vector fields, submanifolds, integration), but of course
some acquaintance with Riemannian geometry, or at least with the classi-
cal theory of curves and surfaces, will ease the reading of the whole book.
All the necessary material can be found, for example, in [Kiihnel (2000)],

2Minimal surfaces have also been introduced in two close but different fields, namely
in affine geometry and discrete geometry. Strictly speaking, these concepts are variants
(interesting ones!) and not generalizations of the classical one discussed here. We refer
the interested reader to [Simon (2000)] and [Bobenko, Schréder, Sullivan, Ziegler (2008)].



Preface xi

[do Carmo (1976)], [do Carmo (1992)]. The second chapter is devoted to the
case of surfaces (two-dimensional submanifolds) in pseudo-Euclidean space.
We first describe a variety of examples and give a first global result: the
classification of ruled minimal surfaces. We also derive a generalized form
of the classical Weierstrass representation formulae, a very important tool
in the study of minimal surfaces. The third chapter is more technical: we
introduce the simplest examples of non-flat pseudo-Riemannian manifolds,
the space forms, and the notion of equivariant hypersurface. We classify
minimal hypersurfaces of pseudo-Euclidean space and of space forms which
are equivariant with respect to some natural group actions. The fourth
chapter forgets for a while the subject of submanifolds and is devoted to the
description of an important class of manifolds which enjoy a triple struc-
ture: pseudo-Riemannian, complex, and symplectic. Such manifolds are
called pseudo-Kdhler manifolds and generalize the concept of Kdhler mani-
fold. We describe some examples, such as the complex counter-parts of the
space forms, and show that the tangent bundle of a pseudo-Ké#hler manifold
is itself pseudo-Kéhler. In the fifth chapter we come back to the core of
the subject, focusing on two special classes of submanifolds appearing in
pseudo-Kéahler geometry, the complex and the Lagrangian ones. It is easily
seen that a complex submanifold is always minimal, and the rest of the
chapter is devoted to the study of Lagrangian submanifolds. In particular,
equivariant minimal Lagrangian submanifolds of complex pseudo-Euclidean
space and of complex space forms are classified, with the method already
used in Chapter 3. The last chapter raises briefly the important question
of whether a minimal submanifold, which is, by definition, a critical point
of the volume, is actually an extremum of the volume functional, or not.
We give both necessary and sufficient conditions for this to happen.

The notations used throughout the text should be transparent to the
reader familiar with current mathematical textbooks. A word written in
italics is being defined in the statement in which it appears, and the ex-
pression A := B means that the mathematical quantity A is defined to be
equal to B. The symbol [J marks the end of a proof.

Most of this book was written in Tralee, while I was a post doctoral
fellow of the SFI (Science Foundation of Ireland). I had the opportunity to
give two mini courses based on the material of this book. The first one, in
January 2009, took place at the Technische Universitiat of Berlin, where I
benefited an Elie Cartan Scholarship (Stiftung Luftbriickendank), while the
second one was given in June 2010 at the Federal University of Sao Carlos,
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thanks to the support of the FAPESP (Fomento de Amparo a Pesquisa do
Estado de Sao Paulo). I am grateful to both Mike Scherfner and Guillermo
Lobos for taking care of everything in Berlin and Sao Carlos respectively. 1
warmly thank Kwong Lai Fun, from World Scientific Publishing, who has
supported me along the process of preparing and editing the manuscript.
I am also greatly indebted to Ildefonso Castro, Benoit Daniel, Brendan
Guilfoyle and Pascal Romon, all of them both colleagues and friends, who
carefully read earlier versions of this work and whose remarks reduced sig-
nificantly, I hope, the number of the typos and imprecisions of the final
text. I am honoured that Francisco Urbano kindly accepted to write the
foreword of this book and it is my pleasure to thank him. This book is
dedicated to my wife Marlene and my son Esteban.

H. Anciauzx
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Chapter 1

Submanifolds in pseudo-Riemannian
geometry

1.1 Pseudo-Riemannian manifolds

1.1.1 Pseudo-Riemannian metrics

A pseudo-Riemannian structure on a differentiable manifold M is simply a
smooth, bilinear 2-form, called the metric, which is non-degenerate in the
following sense: given a tangent vector X at some point z,

if g(X,Y)=0,YY € TuM, then X = 0.

If in addition the metric satisfies g(X, X') > 0 for any non-vanishing tangent
vector X, we say that the metric is positive, and that we have a Riemannian
structure. Hence Pseudo-Riemannian geometry is simply a generalization
of Riemannian geometry. A number of properties of positive metrics are no
longer true in the general case, such as Cauchy-Schwartz inequality.

Remark 1. The non-degeneracy assumption implies the following impor-
tant fact: given a tangent vector X in T, M, if we know the value of
9(X,Y),VY € T, M, then we can uniquely determine X.

In practice, we need only compute g(X, X;), where (X, ..., X;»,) is a basis
of Ty M: setting g;; = g(X;, X;),1 < ¢,7 < m, the fact that the metric is
non-degenerate implies that the matrix [gi;]1<i,j<m is invertible. Denoting
the coefficients of the inverse matrix by ¢ and writing X = 7" \; X,
we find that ¢(X, X;) = 1", Mig(Xs, X;) = 3%, Aigij. Multiplying by
g7, we get A\; = 37", g g(X, X;), hence

X =) g99(X, X;)X. (1.1)

ij=1

A non-vanishing tangent vector X will be called
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- positive (or spacelike) if g(X, X) > 0;
- negative (or timelike) if g(X, X) < 0;
- null (or lightlike) if g(X, X) = 0.

These are the three possible causal characters of a vector. The terms
in parenthesis come from relativity, the theory which first made use of
pseudo-Riemannian geometry. More precisely the pseudo-Riemannian me-
tric (.,.)1 := —da? + dz? + dz2 + dz? was introduced on the space R*, as
a model of the space-time in special relativity!. In modern terms the pair
(R“, (.,.)1), sometimes written in abbreviated form R‘f or R*! is called
the Minkowski space (this space and its generalizations will be described
in depth later on).

By Sylvester’s theorem, at any point z of M, there exists an orthonormal
basis (e1,...,em) of Tx M, in the sense that g(e;,e;) = 0 if i # j and
lg(ei,ei)] = 1 (we shall say that the e;s are unit vectors). Moreover, the
number p of vectors of the basis which are negative (and hence the number
m — p of those which are positive) does not depend of the basis, nor on
the point x. The pair (p,m — p) is called the signature of g. For example,
if the signature is (0,m), the metric is Riemannian; if neither p nor m —p
vanish, or equivalently if there exist null vectors, we say that the metric
is indefinite. The metric of Minkowski space has signature (1,3). More
generally, a pseudo-Riemannian manifold of signature (1, m — 1) is referred
to as a Lorentzian manifold. In the following, we shall set €; := g(e;, e;) = 1
or —1 whenever we speak of an orthonormal basis (ey, ..., €,,). Formula (1.1)
takes a much simpler form in the case of an orthonormal basis:

m
X =Zeig(X,e,-)ei. (12)
i=1

The non-degeneracy assumption of the metric allows to define the im-
portant concept of the trace of a bilinear form with respect to g. Let b
be a bilinear form (possibly degenerate) on T, M, valued on any vector
space F. Given a basis (X, ..., X,,) of T, M, we claim that the quantity
>o1i2197b(X;, X;) € F depends only on g and b, not on the choice of
the basis: if (Y7,..., Y:,) is another basis of TM, there exist real constants
aij,1 <i,j <n such that Y; = Zzlzla,-ka. Thus we have b(Y;,Y;) =
> ri—1 @ikajith(Xi, X;). On the other hand, setting gi; := g(Vi,Yj), we
check that g7 = a'*al'g*, where [a'*] is the inverse matrix of [a;].

1Soon after, the theory of general relativity replaced this model by a more general
pseudo-Riemannian manifold, thus triggering broad interest in the subject.
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Therefore,
3§, V) = > gMb(Xk, Xa).
i,j=1 k,l=1

Hence, the next definition makes sense:

Definition 1. The trace of a bilinear form b with respect to g is the quantity
tr(b) == Y 97b(Xi, X;).
ij=1

Remark 2. Given an orthonormal basis (eq, ..., €, ), we have

tr(b) = i e,;b(ei, ei).
i=1

1.1.2 Structures induced by the metric

A metric is a very rich structure, in the sense that it induces several other
structures in a canonical way. In the following we are going to review them
quickly. We refer to [Kriele (1999)] or [O’'Neill (1983)] for further details.

1.1.2.1 Volume

A pseudo-Riemannian structure induces a volume structure, that is a n-
density dV defined by

AV (X1, .oy Xm) = | det([9(Xi, Xj)hr<ii<m) [/,

where (X1, ..., X;n) are m tangent vectors to M at the point z. In particular,
we may define the volume (possibly infinite) of the manifold M, simply by
integrating dV on it:

Vol(M) := / av.
M

1.1.2.2 The Levi-Civita connection

The differentiable structure of M allows to define the differentiation of a
real function f in the direction of a tangent vector X € T, M, denoted by
X(f)(x) or df+(X): we set

X(N@) = i)

t=0
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where (t), t € I is a parametrized curve a curve 7(t), such that v(0) = «
and v'(0) = X. To be rigorous, we should check that this definition does
not depend on the choice of the curve v but only on the vector X, i.e. that
if 5(0) = 7(0) and 7'(0) = 7'(0), then % f(7(8))|,_o = LS ()], - This
easy task is left to the reader.

An affine connection D or covariant derivative on M is, roughly speak-
ing, a "way of differentiate a vector field” Y of M along a parametrized
curve ¥(t). The result is again a vector field defined along the curve. As
in the case of the differentiation of real functions, this quantity does not
actually depend on the curve v, but rather on its velocity 7/(t). We therefore
denote it by DxY’, where X = +/(t). Of course the expression DxY makes
sense if X and Y are two vector fields defined on an open subset of M, the
result being itself a vector field. We require furthermore that D satisfies
the two following rules:

Dx(fY) = fDxY + X(f)Y,
D¢xY = fDxY,

where f is a real function on M.

A parametrized curve 7(t) is said to be a geodesic with respect to the
connection D if D./4y¥'(t) = 0,Vt € I. Writing this equation in a local
system of coordinates and using the theorem of existence for second order
systems of ordinary differential equations, we get the local existence of
geodesics: given a point x € M and a tangent vector X € T, M, there
exists a real number ty and a unique geodesic ¢ — v, x(t) defined on the
interval (—to,%o), such that v, x(0) = z and 7}, x(0) = X.

There are many different affine connections on an arbitrary differen-
tiable manifold, however the next result states that a pseudo-Riemannian
structure comes with a canonical one:

Theorem 1. There exists a unique affine connection D on a pseudo-
Riemannian manifold (M, g) satisfying

(i) D has no torsion, i.e.
DxY — Dy X = [X,Y];
(ii) g s parallel with respect to D, i.e.
Z(9(X,Y)) = 9(DzX,Y) + g(X, DzY).

This unique connection is called the Levi-Civita connection of g.



