Algebra and Discrete Mathematics Vol. 3

- LECTURES on
DISCRETE MATHEMATICS For
COMPUTER SCIENCE

Bakhadyr Khoussainov
Nodira Khoussainova

B
\\_e. World Scientific



Algebra and Discrete Mathematics

LECTURES on
DISCRETE MATHEMATICS For
COMPUTER SCIENCE

1“' '

£
Fo N ILM
Bakhad oy A
Un;aversu? of l;cm ashgnyd -.%:f '1..

Nodira Khoussainova
University of Washington, USA

B World Scientific

NEW JERSEY . LONDON - SINGAPORE - BEIJING « SHANGHAI - HONG KONG - TAIPEI - CHENNAI



Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Algebra and Discrete Mathematics — Vol. 3
LECTURES ON DISCRETE MATHEMATICS FOR COMPUTER SCIENCE

Copyright © 2012 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to
photocopy is not required from the publisher.

ISBN-13 978-981-4340-50-2
ISBN-10 981-4340-50-2

Printed in Singapore by World Scientific Printers.



Algebra and Discrete Mathemati

LECTURES on
DISCRETE MATHEMATICS For
COMPUTER SCIENCE



Algebra and Discrete Mathematics ISSN: 1793-5873

Managing Editor: Riidiger Gobel (University Duisburg-Essen, Germany)

Editorial Board: Elisabeth Bouscaren, Manfred Droste, Katsuya Eda,
Emmanuel Dror Farjoun, Angus Maclntyre, H.Dugald Macpherson,
José Antonio de la Peia, Luigi Salce, Mark Sapir, Lutz Strilngmann,
Simon Thomas

The series ADM focuses on recent developments in all branches of algebra and
topics closely connected. In particular, it emphasizes combinatorics, set theoretical
methods, model theory and interplay between various fields, and their influence on
algebra and more general discrete structures. The publications of this series are of
special interest to researchers, post-doctorals and graduate students. It is the
intention of the editors to support fascinating new activities of research and to
spread the new developments to the entire mathematical community.

Vol. 1:  Aspects of Infinite Groups: A Festschrift in Honor of Anthony Gaglione
eds. Benjamin Fine, Gerhard Rosenberger & Dennis Spellman

Vol. 2:  Grassmannians of Classical Buildings
by Mark Pankov

Vol. 3: Lectures on Discrete Mathematics for Computer Science
by Bakhadyr Khoussainov & Nodira Khoussainova



We dedicate this book to our parents and
grandparents



Preface

About the book: This textbook is a result of many discussions between
us, the authors. The first author (Bakh) is a well-established mathemati-
cian, and the second author (Nodira) is a young computer science PhD
candidate. One is an expert in the field, and the other is a student. The
first author favors rigorous definitions and proofs, and prefers formal ex-
planations over informal ones. The second author prefers informal expla-
nations with examples. She questions every definition and proof, and asks
for the motivation behind each concept. These two views of the authors
are complementary, and the synergy between the two perspectives is seen
throughout the book. Along with every definition there is an example, along
with every proof there is a discussion, and every chapter comes with real-
world programming exercises. The textbook brings together two different
viewpoints to create a unified textbook on discrete mathematics designed
for students in computer science, software engineering, and mathematics.

Before we started writing this textbook, our conversations about com-
puter science and mathematics often returned to a few fundamental ques-
tions. What is a definition? What is a theorem? What is a proof? How do
we explain and motivate these concepts to students? Since algorithms lie
at the heart of computer science and software engineering, our discussions
evolved to become more focused on algorithms and their correctness. The
questions arising were now the following. What is an algorithm? What
does it mean for an algorithm to be correct? How does one prove the cor-
rectness of an algorithm? What should be emphasized? Why do we need
to learn correctness proofs?

We soon realized that by putting our discussions into writing, we had
started the preparation of a textbook. We designed this textbook for early
stage undergraduate computer science, software engineering and mathe-

vii



viii Lectures on Discrete Mathematics for Computer Science

matics students. For computer science and software engineering students,
the book provides the mathematical background needed to reason about
algorithms, programs and their properties. For instance, the book contains
many examples of correctness proofs for algorithms. For mathematics stu-
dents, the book presents mathematical ideas by connecting them to funda-
mental concepts in computer science. For instance, the book exposes close
connections between inductive proofs and the concept of iteration used in
many programming languages.

As our discussions continued, we often found ourselves discussing the
similarities between the process of constructing a proof and the process of
designing and writing a program. The first step in both processes is to
obtain a clear understanding of the problem at hand. Furthermore, for
both tasks one needs to familiarize oneself with the existing knowledge and
utilize it. For programs, this means knowing previously defined classes,
methods and existing application programming interfaces. For proofs, this
includes knowing previously proven theorems, definitions, and techniques.
Along the same lines, both proofs and algorithms are often designed piece-
by-piece. In proving a theorem, we often break down the problem into
subproblems and try to solve them first, thus constructing lemmas. Sim-
ilarly, in constructing a program, we break it down into various methods
and classes. Yet another similarity is the use of examples to acquire an in-
tuition for the algorithm or proof that one is trying to construct. All these
similarities showcase the prevalence of transferable skills between discrete
mathematics and computer science, thus highlighting the importance of a
textbook like this one.

Book highlights: We cover a wide variety of topics in discrete math-
ematics. However, we would like to emphasize some particular aspects of
the textbook. The first is induction. The book showcases many uses of
induction, including inductive definitions of objects (such as trees, formu-
las of propositional logic, and regular expressions), as well as various types
of proofs by induction. We think that induction is an essential method
for reasoning about algorithms, programs and the objects defined by them.
This is because induction is a mathematical tool that reflects the concept
of iteration, which is pervasive throughout computing.

The second feature is the numerous algorithms and their proofs of cor-
rectness. Almost every lecture presents and analyzes at least one algorithm.
Most theorems are proven through the analysis of algorithms. Furthermore,
because most algorithms use iteration, many of the proofs of correctness
utilize induction via the loop invariant theorem, thus giving the reader more



Preface ix

practice with induction.

The third highlight is the comprehensive coverage of finite automata.
Finite automata constitute a simple yet powerful mathematical model of
programs. Via finite automata one can discuss state transitions of programs
and their representations, consider various types of design problems, talk
about simulating one program by another, and study connections between
various ways of defining problems. The lectures on automata appear near
the end of this book. This organization helps the reader to apply the
knowledge of graphs, algorithms, and induction acquired earlier on in order
to learn about finite automata and their properties.

The fourth aspect of the textbook is that every lecture is followed by a
set of exercises, including programming exercises. These allow the student
to better understand the concepts presented in the lecture, and to apply
the newly-acquired knowledge to real problems.

Book organization: This book is designed as a textbook for a single
semester course in discrete mathematics. It consists of thirty three chapters,
each chapter covering a 50-minute lecture on average. We aimed to keep
the book compact, and at the same time clear and easy to understand. The
reader can easily flip through the book to gain some sense of the material
covered. However, we now briefly outline the key topics covered in this
book.

Lectures 1 through 5 are introductory. They introduce the concepts of
definitions, theorems, and proofs through integer and modulo arithmetic.
Key topics include the fundamental theorem of arithmetic and the Euclid-
ian algorithm. Lecture 5 covers the RSA encryption method, and can be
included or omitted at the teacher’s discretion. Lectures 6 through 9 study
graphs and trees, as well as algorithms on these structures. These are intro-
duced early because they are easy to explain, intuitively understandable,
and relate to real-world problems. These lectures also prepare the reader for
set-theoretic notations. Key topics in these chapters are the path problems,
inductive definition of trees and proofs of some of their properties using in-
duction. Lectures 10 through 13 introduce sets and relations. Unlike tradi-
tional textbooks in discrete mathematics, we present sets and relations as a
useful language to reason about databases. We hope this keeps the readers
engaged and interested, since they immediately see the application of sets to
something concrete and useful. Lectures 14 through 19 present induction,
inductive proofs, recursion, and correctness of algorithms. The key fea-
ture is the loop invariant theorem. These lectures prove the correctness of
many algorithms, including Prim’s minimum spanning tree algorithm and



x Lectures on Discrete Mathematics for Computer Science

Djikstra’s shortest path algorithm. Lectures 20 and 21 study functions.
In addition to the traditional topics such as surjective, injective and bijec-
tive functions, there is a discussion of transition functions. This connects
functions with the forthcoming lectures on finite automata. Lectures 22
through 24 study propositional logic. In these lectures, we employ induc-
tion to reason about the propositional calculus. The key topics include the
unique readability theorem, normal forms, logical equivalence, and models.
Lectures 25 through 30 introduce finite automata. The lectures put an
emphasis on designing automata, determinism and non-determinism, con-
verting non-deterministic automata to deterministic automata, as well as
regular expressions. The key topics presented include the determinization
theorem, Kleene’s theorem, and algorithms for checking various proper-
ties of automata. Finally, Lectures 31 through 33 introduce the basics of
counting and probability. The topics include counting rules and principles,
permutation and combinations, definition of probability, and probability
distributions. Each lecture contains many examples.

Acknowledgments: Parts of this textbook have been used in several
courses at the University of Auckland, National University of Singapore,
and Cornell University. We would like to thank the students of these
classes for testing this book, finding mistakes, and helping us better de-
sign the structure of the book. We also thank the following people for
their support, comments and suggestions: Cristian Calude, Elena Calude,
Michael Dinneen, Gillian Dobbie, Aniruddh Gandhi, Alexander Melnikov,
Mia Minnes, André Nies, Eamonn O’Brien, Pavel Semukhin, and Mark Wil-
son. Without their careful reading of the initial drafts of this textbook, the
book would not be possible in its current form. We also thank our friend
Igor Polivanyi for his beautiful photograph that we used for the book cover.
Finally, we thank you, our reader, for taking the time to read this book.
We hope that it is educational, enjoyable and helpful for your computing
and mathematical endeavors in the years to come.

Bakhadyr Khoussainov and Nodira Khoussainova



Contents

Preface

1.

Definitions, theorems, and proofs
1.1 Definitions. . . . . . . . . . ...
1.2 Theoremsand proofs . . . . ... ... ... .........

1.3 Exercises . . . . . . . . . .. ...

Proof methods
2.1 Direct proof method . . ... ... ... ... ........
2.2 Proof by cases method . . . . .. . ... ... 0oL
2.3 Proof by contradiction method . . . . .. ... ... ....
2.4 Proof by construction method . . . . . .. .. ... .....
2.5 Statements with if and only if connectives . . . . . .. . ..
2.6 Exercises . . . . .. .. ..o

Integers and divisibility
3.1 Divisibility . .. .. ... ... . o000
32 Factors. : ¢ wwmwwmw oo v 6 8 88 4 5 o 5 8665 805w s
3.3 The fundamental theorem of arithmetic . .. ... ... ..
3.4 The division theorem and greatest common divisors

3.5 Exercises . . . . . . ... e e

Euclidean algorithm and congruence relations
4.1 Euclidean algorithm . . .. ... ... ... .........
4.2 Modulo p congruence relation . . . . . .. .. ... .. ...

xi

vii

N s = -

=}

10
12
14
14
16

19
19
21
22
24
26



xii

Lectures on Discrete Mathematics for Computer Science

4.3 Congruence classes modulo p

4.4 Exercises

Secret message passing
5.1 Theproblemsetup. . . .. .. ... ... ... .......
5.2 Modulo arithmetic . . . . ... ... ... ..........
5.3 Three cute theorems . . . . .. ... ... ..........
5.4 Description of the RSA encryption . . ... .........

5.0 Exercises . . ... .. ... ...

Basics of directed graphs
6.1 Directed graphs and their representations . . . . .. .. ..
6.2 Examplesof digraphs. . . . . . .. ... .. ... .. ....
6.3 Paths and strongly connected components in digraphs
6.4 Exercises . .. .. ... .. .. ...

The path problem and undirected graphs
7.1 The path problem . . .. ... ... .............
7.2 Undirected graphs . . . . . .. .. ... ... .. ... ...
7.3 Examplesofgraphs. . . .. .. ... .. ... ........
7.4 Path and components in graphs . . . . . ... ... ... ..

7.5 Exercises . . . . . . . . ...

Circuit problems in graphs
8.1 Euler circuits in graphs . . . . . .. .. ... ...
8.2 Hamiltonian circuit . . . . . . . .. ... ... L.
8.3 Graphs with Hamiltonian circuits . . . . . . ... ... ...

8.4 EXErciSeS . . . v v v i e e e e e e e e e e e

Rooted trees
9.1 Basic definitions and examples . . . . . ... ... ... ..
9.2 Inductive definition of rooted trees . . . . . ... .. .. ..
93 Ordersontrees . . . . . . . . . o v v v v i i
9.4 Treeswithlabels . . .. .. .. ... ... ..........
9.5 A schema for inductive proofs . . . . . . .. ... ... ...

9.6 Exercises . . . . . . . . . e e e e

39
39
41
43
45
47

49
49
53
56
60

63
63
66
69
71
72

75
75
81
83
85



Contents

10. Sets and operations on sets
10.1 Basic definitions and some examples
10.2 Finite and infinite sets
10.3 Operationson sets . . . . . . . . ... .. ... .. .....

10.4 Exercises . . . . . . . o e e e e

11. Relations on sets
11.1 Sequences and Cartesian products . . . . .. .. ... ...
11.2 Relations . : : : s s s s sswaomma s 55 58 ¢ 55 0588
11.3 Binary relations . . . . . . .. ... ... L.

11.4 Exercises . . . . . . o o i i e e e

12. Equivalence relations and partial orders
12.1 Equivalence relations . . . . . . . . ... ... L.
12.2 Partitions . . . . . . . . ... oo
12.3 Partial orders . . . . . . . . . . .. ..o
12.4 Greatest and maximal elements . . . . . . . ... ... ...
12.5 Hasse diagrams . . . . . . .. ... .. ... ... ...

12.6 Exercises . . . . . . . . . e e e e e e

13. Databases and relational structures
13.1 A toy example of a database . . ... .. ... .......
13.2 Relational structures . . . . . . . . . ... ... ... ...
13.3 ExXercises . . . . . . . o i e e e e e

14. Relational calculus
14.1 Boolean operations . . . . . . . . . .. ... ... ...
14.2 The existentiation operation . . . . . . .. .. ... ... ..
14.3 Other operations . . . . . . . . . . .. ... ... .. ..

14.4 EXETCISES . . o v v v v e e e e e e e e e e e e e e

15. Program correctness through loop invariants
15.1 Three simple algorithms . . . . . . .. .. ... .. .....
15.2 The loop invariant theorem . . .. .. .. ... .. ... ..
15.3 Applications of the loop invariant theorem . . . . . . . . ..

15.4 EXETCISES .« o v o e e e e e e e e e e e e e e e e

xiii

103
103
105
106
109

111
111
113
115
118

121
121
123
125
127
129
130

133
133
135
137

139
140
141
144
146



xiv Lectures on Discrete Mathematics for Computer Science

16. Induction and recursion 155
16.1 Proofs by induction . . . . . .. .. ... ... ........ 155
16.2 Recursion . . . .. ... .. .. ... ... .. ... 160
16.3 Exercises . . . . . .. ... 162

17. Spanning trees 165
17.1 Spanning trees . . . . . . ... ... ... 165
17.2 Minimum spanning trees . . . . . . . .. ... ... ..... 171
17.3 Prim’s algorithm . . . . . . .. .. .. ... ......... 171
17.4 Exercises . . . . . . . . o e e 174

18. Shortest paths in directed weighted graphs 177
18.1 Shortest paths . . . . . . ... ... ... ..., 177
18.2 Properties of shortest paths . . . . . . ... .. .. ... .. 178
18.3 Formulation of the problem . . .. ... .. ... ...... 180
18.4 Dijkstra algorithm . . .. . .. .. ... ... ........ 180
18.5 Example . . . . . . . . . ... 181
18.6 Correctness of Dijkstra’s algorithm . . . . . ... .. .. .. 183
18.7 Exercises . . . . . . . . . e e e 185

19. Games played on finite graphs 187
19.1 Bipartite graphs . . . . . . . . ... o e 187
19.2 Reachability games . . . . . . . . . . .. ... ... ... .. 188
19.3 Solving reachability games . . . . . . .. .. ... ... ... 191
19.4 Exercises . . . . . . . . ..o e e 194

20. Functions 197
20.1 Definition of function . . . . . . . . ... .. ... L. 197
20.2 Equality of functions . . . . . . ... ... 200
20.3 Composition of functions . . . . . . ... ... ... ... 202
20.4 EXErciSes . . . . v vt i e e e e e e e e e e e 203

21. Types of functions 205
21.1 Surjective functions . . . . . .. .. ... ..o 205
21.2 Injective functions . . . . . .. ... ... . 206

21.3 Bijective functions . . . . . .. ... L 207



Contents

21.4 Transition functions

21.5 Exercises

22. Syntax of propositional logic
22.1 Propositions and formulas . . . .. .. .. ... .. .....
22.2 Formation trees for formulas. . . . . ... .. ... .....
22.3 The unique readability theorem . . . . . . . ... ... ...
22.4 Exercises

23. Semantics of propositional logic
23.1 Truth assignments . . . . ... ... ... ..........
23.2 Logical equivalence . . . . .. ... .. ... .. ... ...,

23.3 Exercises . . . . . . ... e e e e e

24. Normal forms and the SAT problem
24.1 Truth tables and normal forms . . .. .. ... .. ... ..
24.2 The SAT problem . ... ... ... .............
243 Models . . . . . . . . . . e e e

24.4 EXErcises . . . . . . v i i i i e e e e e e e e

25. Deterministic finite automata
25.1 Strings and languages . . . . ... .. .. ... ... .. ..
25.2 Operations on languages . . . . . . .. .. .. ... .....
25.3 Deterministic finite automata (DFA) . . . . .. .. ... ..

25.4 EXercises . . . . . . . i e e e e e e e e e e e

26. Designing finite automata
26.1 Twoexamples . . . . . . . . . ... .. ...
26.2 Constructing automata for the complementation operation .
26.3 Constructing automata for the union operation . . . . . ..
26.4 Constructing automata for the intersection operation . . . .

26.5 EXEercises . . . . . . i i i e e e e e e e e e e e e

27. Nondeterministic finite automata
27.1 Definitions and examples. . . . . . .. ... ... ... ...
27.2 Runs of nondeterministic finite automata . . . . . .. . ..

27.3 EXEICISES . . . .« v v v i e e e e e e e e e e e e e e e e

213
213
216
217
219

221
221
225
227

229
229
232
234
236

239
239
240
241
246

249
249
251
251
253
254



xvi Lectures on Discrete Mathematics for Computer Science

28. The subset construction
28.1 Converting NFA to DFA

29. Regular expressions and finite automata

29.1 Regular expressions . . . . . . . . . .. ... ... ... ..
29.2 From regular expressions to finite automata . . . . . . . .
29.3 Generalized finite automata . . . . . . . .. ... ... ..
294 EXercisSes : : « ¢ o v sww s e v n e s 8 6 s s 55 8w v s w

30. Algorithms for finite automata

30.1 Algorithmic problems for finite automata . . . . .. . . .
30.2 The pumping lemma . . . . . . .. ... .. .. ......
30.3 The SAT problem and automata . . .. .. .. ... ...

30.4 Exercises . . . . . . i i i e e e e e e e e e e

31. Counting principles

31.1 Basic counting rules and principles . . . . . . .. ... ..
31.2 Permutations . . . . . . .. .. .. ... 0000

31.3 EXErciSes . . . v v v v v e e e e e e e e e e e e e e e

32. Permutations and combinations

32.1 Cycles and permutations . . . . . . ... .. ... .....
32.2 Combinations . . . . . . . . . . .. ..o

32.3 Exercises . . . . . . . . e e e e e e e e e e

33. Basics of probability

33.1 Elements of probability . . .. .. ... ..........
33.2 Conditional probability . . . . .. ... .. ... .....
33.3 Independence . . . . . ... .. .. ...
33.4 Probability distribution . . .. .. ... ... ... ...
33.5 Random variables. . . . . . .. ... ... ... .. ...,

33.6 EXErciSes . . . - v o v v i e e e e e e e e e

Solutions to selected exercises

28.2 NFA withsilentmoves . . . . . .. .. ... .. ......
28.3 Exercises . . . . . .. ...

265
265
267
271

273
273
276
278
283

285
285
287
290
293

295
295
299
302

305
305
307
310

313
313
317
321

322
325

327

331



Lecture 1

Definitions, theorems, and proofs

I'm not telling you it is going to be easy.
I'm telling you it’s going to be worth it.
Art Williams.

1.1 Definitions

Before writing a program, we must fully understand what the program is
supposed to do. A description of the things that we would like our pro-
gram to do is called the specification of the program. Correctly writing
the specifications of a program requires a lot of time and intellectual effort.
However, it is a necessary and helpful task. If we write our specification
badly, then the corresponding program is usually hard to understand, incor-
rect or exhibits undesired behavior. We can use many different techniques
and languages for preparing program specifications.

One way to describe the specifications is to explain them informally
through conversations and documents, omitting many details. Informal
specifications are a helpful first step in writing programs because they do
not require the programmer to flesh out all the details of the program a pri-
ori and thus can be written quickly. That said, using only this method can
have negative consequences. It often leads to an inaccurate understanding
of the specifications and their different interpretations. Therefore, such an
informal approach can result in incorrect programs.

A second method is to write a semi-formal description of program speci-
fications. Usually, these specifications are written in document format with
some structure and a little rigor. These types of specifications are more
precise than the informal approach. However, semi-formal specifications



