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Preface

The diverse efforts of authors and the wide scope of coverage under-
taken in Advances in Catalysis—indeed, the breadth of catalysis itself—are
well characterized by the seven chapters of this volume. These chapters
were written by authors from departments of chemistry, chemical engineer-
ing, inorganic and analytical chemistry, materials science, and physics;
from several universities; from two major industrial laboratories; and from
at least three institutes dedicated specifically to catalysis!

Similarly, the breadth of subjects covered is rather remarkable. The
subjects covered in the present volume include

Principles of the physical structure of solid catalysts: V. P. Zhdanov
reviews modern concepts concerning pore structures that go beyond the old,
lumped parameters of pore size and tortuosity.

Catalytic phenomena: F. Schiith et al. have collected many observa-
tions, theories, and ideas concerning oscillatory rate behavior.

Structure—rate relationships: W. M. H. Sachtler and Z. Zhang present
a view of many aspects of catalysis and catalysts utilizing transition metals
in zeolites; E. Iglesia er al. discuss catalysts, mechanisms, and performance
in the Fischer—Tropsch reaction; and Y. Morikawa makes us aware of a class
of intracrystalline catalysts other than zeolites.

Specific product orientation: L. E. Manzer and V. N. M. Rao describe
catalytic pathways to the modern product challenge of alternatives to chloro-
fluorocarbons.

New analytical techniques for internal catalyst properties: The unique
collaborative tecam of J. Caro er al. describes developments of NMR tech-
niques for the study of the motions of guest molecules in zeolites.

Altogether, one must marvel at the many “disciplinary” aspects that
interplay to generate the knowledge and applications of catalytic science.

PAUL B. WEIsz
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Mikhail I. Temkin, 1908-1991

Mikhail 1. Temkin, born in Bielostock, graduated in 1926 from the
Lepeshinsky School in Moscow. At that time, the law prescribed two years
of work prior to admission to a university. According to Temkin, these
years spent at chemical plants shaped his future interests in linking theory
to practice. He graduated in 1932 from Moscow State University and joined
the Karpov Institute of Physical Chemistry, where he began studies on ther-
modynamics and kinetics, with applications to catalysis. After a visit in
1935 to the laboratory of Michael Polanyi in Manchester, Temkin returned
to the Karpov Institute, where he started the Laboratory of Chemical Kinet-
ics that he headed for 50 years.

All his life, Temkin contributed to science in many areas, such as dif-
fusion of heavy water into ordinary water, fugacity of gas mixtures, theory
of mixtures of molten salts, and mass transfer in chemical engineering. But
he left his indelible mark in the fundamentals of catalytic kinetics, on a par
with C. J. Christiansen and J. Horiuti.

It all started in 1938 when Temkin first applied transition state theory
to heterogeneous catalysis. Soon after, he published with V. Pyzhev one of
the most frequently cited papers in catalytic ammonia synthesis. Since both
Mikhail Temkin and Paul Emmett had a profound influence on the theory
and practice of this famous reaction, it seems proper to quote here Emmett’s
assessment of the 1939-1940 paper of Temkin and Pyazhev.*

Numerous studies of the kinetics of ammonia synthesis and decomposition have
been made. With a few exceptions, work has tended to show that the slow step in
the synthesis of ammonia is the chemisorption of nitrogen and the slow step for the
decomposition is the desorption of nitrogen. Furthermore, it turns out that the de-
composition and synthesis of ammonia usually involve in the rate expression a term
Plu,/Pi1,, where y/x is close to 1.5. In 1940, Temkin and Pyzhev derived an equa-
tion consistent with both of these observations [M. I. Temkin and V. Pyzhev, Acta
Physiochim. U.R.S.S. 12, 327 (1940)]. It has formed the basis for most of the ki-
netic treatments of ammonia synthesis and decomposition in recent years.

Temkin assumed a heterogeneous surface and set up equations for the adsorption
equilibrium of nitrogen on iron, for the rate of adsorption, and for the rate of de-

*Reproduced with permission from “The Physical Basis for Heterogeneous Catalysis™ (E. Drauglis
and R. [. Jaffee, eds.) Plenum, New York, 1975.
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X1V MIKHAIL [. TEMKIN, 1908-1991

sorption. Specifically his three pertinent equations are:

1

0= ?ln aoP’ 4)
v = kPe# (5)
w = ke’ (6)

where 6 is the fraction of the surface covered, P’ is the equilibrium pressure or the
“virtual pressure™ of nitrogen, v is the rate of adsorption, w is the rate of desorp-
tion, and f, ao, ki, ks, g, and h are constants. These equations are constructed to
conform to the idea that the rates of adsorption and desorption of nitrogen depend
exponentially on the fraction of the surface covered with nitrogen. At high cover-
age, adsorption is slow and desorption fast. Incidentally, it may be noted that mea-
surements by Emmett and Brunauer [P. H. Emmett and S. Brunauer, J. Am.
Chem. Soc. 56, 35 (1934)] showed that up to 50 atm partial pressure, the adsorp-
tion of nitrogen increased as (Px,)"" regardless of whether the nitrogen was by it-
self or equilibrated with a 3:1 H.:N> mixture.

In applying these equations, the authors assumed that the adsorption of nitrogen
on the iron catalyst in the presence of an ammonia—hydrogen mixture is the same
as it would be when at a nitrogen pressure equivalent to the existing partial pressure
of ammonia and hydrogen in the gas mixture. Thus, since the equilibrium constant
for ammonia synthesis is

K = (Pxu)/(Pu,) (Px)) (7)

the value of P’ can be represented by (Pun.)?/K (Py.)’, and the first of the Temkin
equations becomes

o S a()(PNII\):

As an illustration, the application of these equations to the decomposition of ammo-
nia would take the form

— & P | _ , [(Psu)?a0 | (Pyi,)’
w lxdexp[ (h/f) lna(,(P} VK jl = kd{ (PH:)‘K} =k P | 9)

Love and Emmett [K. S. Love and P. H. Emmett, J. Am. Chem. Soc. 63, 3297
(1991)] found experimentally that over a doubly promoted catalyst the rate of de-
composition is proportional to (Pnu,)"/(Pu,)*”. This would correspond to 8 hav-
ing a value of 0.3.

The three seminal ideas in this early work of Temkin are quite general.
The first is that adsorption of nitrogen is rate determining. The second is the
virtual pressure or fugacity of adsorbed nitrogen, a concept of great importance
to the understanding of catalytic cycles at the steady state. The third idea is the
kinetic description of the catalytic surface as a nonuniform one. The last was
systematized later by Temkin’s school, both in theory and in application, to a
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large number of important catalytic reactions. The importance of Temkin’s the-
ory of kinetics on nonuniform surfaces is not so much in its formation but in the
deeper kinetic understanding of how any catalyst works and how to select the
catalyst with the fastest turnover rate.

Like the kinetic concepts of Christiansen and Horiuti, those of Temkin
were far ahead of their common acceptance by the catalytic community. Even
today, more than 50 years after the Temkin—Pyzhev paper, the idea of virtual
fugacity is not well understood by the majority of workers in catalytic kinetics.
It is safe to predict that many of the other ideas of Temkin, like that of average
stoichiometric number or reaction routes, will influence younger catalytic ki-
neticists who now have access to powerful computers.

The legacy of Temkin is a rich one. While strong on theory, Temkin was
also a gifted and exacting experimentalist. He and his co-workers proposed and
built in 1950 a continuous flow reactor that operates in a “gradientless” manner
to measure directly the rate of reactions catalyzed by solids.

Jean-Paul Sartre is reported to have said “I shall die twice: the first time
physically, and the second time when no one shall read my works.” Mikhail
- Temkin will live a long, long second life, as his name will remain known by
new generations of kineticists who will not even need to read the original writ-
ings. since the main ideas of Temkin are already in all textbooks and mono-
graphs on heterogeneous catalysis.

MICHEL BOUDART
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Application of Percolation Theory to
Describing Kinetic Processes in
Porous Solids

V. P. ZHDANOV

Institute of Catalysis
Novosibirsk 630090, Russia

. Introduction

Porous solids are widely encountered in industry and everyday life, and
their importance has long been recognized by scientists and engineers (/).
A considerable amount of work on porous solids has been undertaken in
both academic and industrial laboratories (/,2).

The properties of porous solids, e.g., adsorptive capacity, chemical reac-
tivity, and catalytic activity, are dependent on their pore structure. In gen-
eral, porous materials may have extremely complex pore structures, which
are difficult to represent by simple geometrical models. As a rule, however,
the actual pore structures belong to either corpuscular or spongy classes
(3,4). Corpuscular systems are formed by particles of various shapes con-
nected to one another. In this case, the pores represent interstices between
particles (see, e.g., Fig. 1). In spongy structures, the pore space can be
treated as a lattice of voids interconnected by necks in a three-dimensional
network (Figs. 2 and 3). In turn, the latter class of porous solids can be di-
vided into two groups: (1) structures with the pore volume concentrated pri-
marily in voids, whereas the necks possess no volume of their own (Fig. 2),
and (2) structures with the pore volume concentrated in necks, whereas the
void volume is negligible (Fig. 3). There exist, of course, mixed structures
wherein, for example, particles of a corpuscular system may have inner
spongy porosity.

A feature of special interest for many purposes is the width of pores,
e.g., the diameter of a cylindrical pore, or the distance between the sides of
a slit-shaped pore. A convenient classification of pores according to their

English translation copyright © 1993 by Academic Press, Inc.
All rights of reproduction in any form reserved.
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Fi1G. 1. Corpuscular porous structures. (a) The element of the packing of spheres; (b) the
model of round disk packings; (c,d) models of the packing of round rods.
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