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Preface

This volume contains the notes of lectures given at the school on “Nonlinear Dy-
namics in Solids™ held at the Physikzentrum Bad Honnef, 2-6 October 1989 under
the patronage of the Deutsche Physikalische Gesellschaft.

Nonlinear dynamics has become a highly active research area, owing to many
interesting developments during the last three decades in the theoretical analysis
of dynamical processes in both Hamiltonian and dissipative systems. Research has
been focused on a variety of problems, such as the characteristics of regular and
chaotic motion in Hamiltonian dynamics, the problem of quantum chaos, the forma-
tion and properties of solitary spatio-temporal structures, the occurrence of strange
attractors in dissipative systems, and the bifurcation scenarios leading to complex
time behaviour.

Until recently, predictions of the theory have been tested predominantly on insta-
bilities in hydrodynamic systems, where many interesting experiments have provided
valuable input and have led to a fruitful interaction between experiment and theory.
Fluid systems are certainly good candidates for performing clean experiments free
from disturbing influences: with fluids, compared to solids, it is simpler to prepare
good samples, the relevant length and time scales are in easily accessible ranges, and
it is possible to do measurements “inside” the fluid, because it can be filled in after
the construction of the apparatus. Further, the theory describing the macroscopic
dynamics of fluids is well established and contains only very few parameters, all of
which have well-known values.

The dynamics of solids, on the other hand, is much richer and has a higher degree
of physical interest. Moreover, for several solid-state systems, the methods of sample
preparation and measuring techniques have reached a level where experiments on
nonlinear dynamic behaviour of comparable quality and detail have become possible.
It therefore appeared to be the right time to bring together a number of leading
experts working on nonlinear dynamic properties of various solid-state systems to
give introductory reports on the state of knowledge, problems incurred, and future
prospects.

The volume starts with a presentation of the basic concepts of formation, sym-
metry and stability of dynamic structures, and a discussion of the analogies and
differences to phase transitions in equilibrium systems. This is followed by a brief
introduction to deterministic chaos and strange attractors, and an outline of methods
for the characterization of chaotic motion and the rcconstructlon of attractors from
experimental time series.

The next group of topics is concerned w1th nonlinear oscillations and chaos
occurring in various solid-state systems: current instabilities and optical instabili-
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ties in semiconductors, driven Josephson junctions, and spin-wave instabilities in
ferromagnets.

First, an introduction is given to various mechanisms of current instabilities in
semiconductors, their theoretical description, and the methods used for their analysis.
The current instability occurring in p-germanium due to avalanche breakdown gives
rise to a rich variety of self-generated dynamical structures, as discussed in a contri-
bution containing a detailed expérimcntal analysis of oscillatory and chaotic states
due to breathing of current filaments. Formation and dynamics of current filaments
in semiconductor devices such as pin diodes is reviewed in a further contribution.

Next follows a discussion of optical bistabilities in passive semiconductors based
on photo-thermal nonlinearities, and of self-oscillations in optical ring resonators
with bistable elements.

A variety of nonlinear dynamical phenomena and chaos is expected to occur in
Josephson junctions and devices driven by ac or dc currents. Such systems are the
subject of a contribution reviewing experimental and numerical investigations of the
characteristics of chaotic dynamics in various parts of parameter space.

Another class of solid-state systems exhibiting chaotic dynamics is ferromagnetic
samples excited by strong microwave fields giving rise to spin-wave instabilities. The
last contribution of this group reports and analyses complex multistable behaviour,
self-oscillations, and bifurcation sequences leading to chaos found in magnetic res-
onance experiments on YIG (yttrium iron garnet) spheres.

A theme discussed in several of these contributions concerns the interplay be-
tween nonlinear dynamics and solid-state physics, and in particular the question to
what extent it is possible to relate the details of the observed nonlinear dynamical
effects — bifurcation scenarios, onset of chaos, characteristics of chaotic dynamics,
etc. — to typical solid-state properties. Owing to the extreme sensitivity of the non-
linear dynamical properties to the detailed sample structure, this presents a serious
problem: even samples cut from the same carefully grown material show differ-
ences in their nonlinear dynamic behaviour. On the other hand, this sensitivity is an
important aspect for future development. It may well turn out that observation of
nonlinear dynamical effects can be developed to become a most sensitive tool for
the study of solid-state properties.

An interesting aspect of nonlinear dynamics, the formation of solitary spatio-
temporal structures (kinks, domain walls), had actually already found experimental
attention in solid-state physics at an early stage. Under certain conditions, these
structures are expected to occur in thermodynamic equilibrium as a gas of nonlinear
excitations; detailed investigations have been carried out in particular for quasi-one-
dimensional magnetic systems, which are the subject of the next two contributions.
The first of these reviews the theory of the formation, propagation and stability
of such nonlinear excitations as well as their statistical mechanics, and the second
reports results of inelastic neutron scattering, and NMR and ESR experiments for
CsNiF3 and TMMC (Tetramethylammonium Manganese Trichloride).

Macroscopic dynamical processes in solids are usually dissipative, and are there-
fore properly described in terms of the concepts of the dynamics of dissipative sys-
tems such as attractors and transients, with well-known exceptions of certain (nuclear
and electron) spin systems with extremely small damping. However, semiconductor

Vi



physics has reached a stage where mesoscopic semiconductor structures are now
available in which electron transport is essentially dissipation-free, and which are
therefore expected to exhibit nonlinear phenomena based on Hamiltonian dynamics.
The relevance of Hamiltonian chaos and KAM theory for phenomena occurring in
such systems is discussed in a contribution focusing on lateral surface superlattices.

It is an interesting question whether the concept of chaos may be extended to
describe irregular behaviour in spatial dimensions, and whether spatial chaos is a
useful concept for characterizing disordered or glassy structures. These questions
are addressed in the last contribution of this volume, where simple models are
introduced which have a multitude of spatially chaotic metastable states showing at
least qualitatively some of the typical properties of glassy materials.

Basel
January 1992 H. Thomas
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Dynamical Structures:
Formation, Symmetry, Stability

H. Thomas

Institut fiir Physik der Universitit Basel,
Klingelbergstrasse 82, CH-4056 Basel, Switzerland

1. Introduction

The subject of this lecture is the formation of dynamic structures in physical
systems under the influence of external forces which drive currents through the
system. It is a common feature of such “driven” systems that the driving force
keeps them far from thermodynamic equilibrium, and that dissipation gives
rise to the production of heat which has to be carried away by coupling the
system to a heat sink (Fig.1). ‘

Our main interest is in systems under the influence of a stationary driving
force. Here, one may distinguish two cases:

— Systems in which the force always gives rise to a current, for example a
semiconductor in an electric field.
Systems in which the occurrence of a current depends on the boundary
conditions, for example a magnetic system in a static magnetic field: Here,
thermodynamic equilibrium is possible because of the absence of magnetic
charges, but continuous flow of magnetic flux may still occur if the field
drives a domain wall between two oppositely magnetized domains.

Examples of driven systems in solid-state physics are treated in the other chap-
ters of this book.

We shall concentrate on the behaviour of the system after the decay of
transients. Of particular importance is the fact that, in contrast to thermody-
namic systems which always approach a state of thermodynamic equilibrium,
driven systems may either approach a stationary nonequilibrium state, or re-
main permanently time-dependent. It is the possiblity of the occurrence of such
“dynamic structures” with a spontaneously broken time translation symmetry
which makes the study of driven systems especially fascinating.

ym

o

Fig. 1. The external force F' drives a current j through the system; the dissipated energy @
is absorbed by a heat sink.



The formation of dynamic structures in driven systems bears a certain re-
semblance to the occurrence of phase transitions in thermodynamic equilibrium
systems. In the latter case, symmetry aspects have proved to be of central im-
portance. It appears therefore appropriate to extend the symmetry concept for
application to driven systems, and to determine its significance for the predic-
tion and classification of the types of dynamic structure which may occur in a
given situation.

In this lecture, I shall give a simple introduction to the basic features of
structure formation and its relation to symmetry. For more detailed presenta-
tions and discussions of other aspects, I refer to some standard texts [1-4] and
a number of recent discussions of the subject [5-13].

2. Description of Driven Systems

2.1 Equation of Motion

We describe the dynamics of driven systems on a macroscopic level, similar
to that used in Landau’s theory of phase transitions: The state of the system
is represented by a point € in a multidimensional state space (in general a
differentiable manifold); the relevant external parameter is called the control
parameter .

The state change in the course of time is described in terms of a velocity

field B(0, i) in state space, giving rise to an evolution equation

de

= BO.w (2.1)
which is nonlinear and local in time (no memory!). In the case of a stationary
control parameter p, (2.1) is invariant with respect to time translations.

In dissipative systems, the vector field B is contracting, i.e. in the course
of time any trajectory 8(t) approaches an attractor in state space. The type
of attractor may be characterized by a set of Lyapunov ezponents (LE) which
describe the asymptotic behaviour of the distance between two initially adjacent
state points for t — 0o. A trajectory v : @ = 8(t) has an LE X if the distance
|6(¢) —01(¢)| between a point §(¢) on v and a neighboring point ,(t) varies for
t — oo asymptotically as exp (At). In a state space of N dimensions, a trajectory
has in general N LEs \; which satisfy ), A\; < 0 in dissipative systems. One
distinguishes the following types of attractor:

— Fized points in state space corresponding to stationary states 8s(p), for
which all Lyapunov exponents are negative, and which are found as stable
solutions of

B(8s, 1) =0 . (2.2)

—  Limit cycles (1-tori) with a periodic time dependence, 8.(t) = 0.(t + T),
having 1 vanishing LE.



— Multiply periodic structures (n-tor:) having n vanishing LEs.
— Strange attractors exhibiting chaotic motion characterized by 1 or more
positive LEs.

Equation (2.1) represents a deterministic evolution equation. Fluctuations
may be taken into account by adding a stochastic force £(8,t) with (£(0,t)) =0
to the r.h.s of (2.1).

2.2 Symmetry

The set of transformations g : 8 — ¢ of state space which leave the velocity
field invariant forms the symmetry group G of the system:

G :={g|gB(8)=B(g9) V6 } . (2.3)

The symmetry group G of the stationary state 8, consists of all transforma-
tions ¢ € G which leave 6 invariant:

Gs :={g€G|gbs =065} . (2.4)

The stationary state 5 may be fully symmetric (G5 coincides with G), or it may
already have a broken symmetry (G; is a genuine subgroup of G). In the latter
case, there exists a set of symmetry-related stationary states corresponding to
the left cosets of G in G.

Further, a stationary state is invariant under all time translations T(7) :
t — t 4+ 7 forming the full-time-translation group

I ={T(r)|reR} . (2.5)
The eztended symmetry group Gs of the stationary state @ is defined as
gs = Gs xT . (26)

It corresponds to the “H-group” in Landau’s theory of phase transitions. Struc-
ture formation is associated with a breaking of symmetry: A structure bifur-
cating from 8, will be characterized by an “L-group”, which is a subgroup of

Gs (see Sect. 3.2).

3. Self-oscillations (Limit Cycles)

3.1 Bifurcation of Self-oscillations (Hopf Bifurcation)

3.1.1 Destabilization of a Stationary State. In order to obtain conditions for the
formation of self-oscillations, we study the linear stability of the stationary state
05(p) with respect to small perturbations 9(t): 6(t) = 65 + ¥(¢). Linearization
of (2.1) about 6, yields the equation of motion for ¥
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Fig. 2. Poles in the complex frequency plane with Re@)ﬂ # 0 occur in pairs (wn, —w})

@ L9, (3.1)

where L(y) is a real time-independent matrix defined by

L :=90B/d8| (32)

=6,
The normal modes of the stationary state 8 are solutions of (3.1) of the form
Bn(t) = ppe™i"" ; (3.3)

their polarization amplitudes p, and frequencies w, are determined by the
linear eigenvalue problem

L(p) - p, = —iwnp, . (3.4)

Because of the reality of L(x), normal modes with Rew, # 0 occur in pairs
{(Pn; wn), (7, —wp)} (see Fig. 2).

We assume that the stationary state 8 is stable in a control-parameter
range p < pc:

Imw,(p) <0 for p < pc Vn (3.5)
(except for zero-frequency modes),

and that at the stability threshold g = p. there occurs an instability with
respect to a single, possibly degenerate mode (single mode pair if Rew; # 0):

dImw,
dp [p= pe

Imw;(p) =0, >0 . (3.6)

" Such an instability marks the bifurcation of a new structure.

3.1.2. The Order Parameter. Types of Bifurcating Structures. Close to the
bifurcation threshold, the bifurcating structure is uniquely described by the
projection ¢ of the state vector  onto the space {2 spanned by the undamped
normal modes. In analogy to Landau’s theory of phase transitions, the projec-
tion ¢ is called the “order parameter” (OP) associated with the instability. By
adiabatic elimination of the other components of 8, one obtains from (2.1) a
reduced equation of motion in OP space

4
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Fig. 3. (a) Soft-mode instability. (b) Hard-mode instability

d

X W e+ NG) (8.7)

where IN(¢) contains all nonlinear terms. Symmetry requires that the terms in
(3.7) transform equivariant with the OP. Therefore, the form of this equation
may be constructed without actually carrying out the adiabatic elimimation,
by writing IN(¢) as a sum of polynomial equivariants of increasing degree, with
coeflicients considered as model parameters.

The type of instability is determined by the real part w. := Rew;(p.) of
the mode frequency at threshold (see Fig.3 and Table 1):

- w. = 0: If a purely relazational mode becomes undamped (“soft-mode
instability”), one expects a bifurcation of a new stationary state.

- we # 0: If an oscillating mode becomes undamped (“hard-mode instabil-
ity”), one expects a bifurcation of a limit cycle with period T, = 27 /w, at

threshold.

Table 1. Unstable modes and bifurcating structures

Type of Instability Bifurcating Structure

Soft Mode: we =0 Stationary: ¢ = const
Hard Mode: wc #0 Oscillating: ¢(t + T) = ¢(t)

Te = 27 we

These expectations are indeed confirmed by the formal bifurcation analysis
based on an expansion of the solution of (3.7) (or even of the original equation
(2.1)) in powers of the amplitude ¢ = |@| of the OP. From such an analysis, one
obtains the components of the OP, the control parameter u, and in the case of
a limit cycle its period T' expressed in powers of ¢,

p=¢(e) p=ulE), T=T(). (3.8)

The form of the function pu(e) determines the existence range of the new struc-
ture (see Fig. 4): '

— w<pe  (subcritical bifurcation),
- U > pe (supercritical bifurcation),
~ @ <>pc (transcritical bifurcation).

The dependence of the amplitude of the OP, its orientation in OP space, and
(if applicable) its period T on the control parameter p are found from (3.8) by

5
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Fig. 4a,b. Hopf bifurcation. (a) supercritical, (b) subcritical

elimination of the amplitude parameter €. Finally, the structures identified in
this way have to be tested for stability in order to determine which of them can
actually occur. It is found that close to the bifurcation threshold, subcritical
branches are always unstable; only the supercritical branches are candidates
for stable structures. If there is no symmetry at all, there either occurs a trans-
critical bifurcation with exchange of stability, or a Hopf bifurcation.

The bifurcation problem depends in an essential way on the degeneracy of
the destabilized mode, i.e. on the dimension of the OP space {2 (assuming that
the representation of the OP occurs with multiplicity 1) (Table 2):

— Nondegenerate soft mode, dim {2 = 1: The direction of ¢ is fixed by sym-
metry; only its amplitude has to be determined from bifurcation analysis.

— Degenerate soft mode, dim 2 > 1: Both the amplitude and the direction
of ¢ have to be determined from bifurcation analysis.

Correspondingly:

— Nondegenerate hard mode, dim 2 = 2 (Hopf bifurcation): The orienta-
tion of the limit cycle is fixed by symmetry, only its amplitude has to be
determined from bifurcation analysis.

— Degenerate hard-mode, dim §2 > 2 (degenerate Hopf bifurcation): Both the
orientation of the limit cycle and its amplitude have to be determined from
bifurcation analysis.

Note that in the case of a hard-mode instability dim {2 is even, i.e. the smallest
dimension for a degenerate Hopf bifurcation is 4. Degenerate Hopf bifurcations
with dim 2 = 4 are studied in [6,7,9]; other examples are provided by wave
bifurcations associated with degenerate modes (see Sects. 4, 5).

Table 2. OP repesentation and bifurcating structure

Instability type dim 2 Bifurcating Structure

Soft mode dim 2 =1 uniquely determined by symmetry
dim 2 > 2 depending on higher-order terms

Hard Mode dim 2 =2 uniquely determined by symmetry
dim 2 > 4 depending on higher-order terms




In most cases it is found that the direction of the OP satisfies a rule of
“minimally broken symmetry”:

The symmetry group of the bifurcating structure is a maximal subgroup of
the symmetry group of the state 8,

which may serve as a first indication of the structures to be expected.

Other types of bifurcation which occur frequently but which cannot be
found from the stability analysis of an “unperturbed” stationary state @s(u)
include:

— “Saddle-node bifurcation”: At a critical value of the control parameter there
appears a pair of fixed points, one of them stable, the other unstable, but
unconnected to any other fixed point.

— “Homoclinic bifurcation” of a limit cycle: At a critical value of the control
parameter there appears a fixed point 8y with a homoclinic orbit starting
at t = —oo at 8y and returning at ¢t = oo to 8, which develops into a limit
cycle bifurcating with zero frequency but finite amplitude.

3.1.3 Symmetry Properties of the Order Parameter. The OP space {2 carries
a representation of the symmetry group Gs of the parent state 5. In analogy
to Landau’s theory of phase transitions, one expects that this representation
contains important information on the bifurcation behaviour. Of particular
interest is the question whether it can be predicted on the basis of symmetry
alone if the instability gives rise to a stationary or an oscillating structure. The
following result shows the extent to which this is the case [8]:

The OP associated with the bifurcation of a stationary state transforms as

a real irreducible representation of Gj

The OP associated with a limit cycle bifurcation transforms

— either as a physically irreducible representation consisting of two com-
plex conjugate irreducible representations (“symmetry-induced limit-
cycle bifurcation”)

— or as a reducible real representation consisting of two equivalent real
irreducible representations of G, (“coupling-induced limit-cycle bifur-
cation”).

The two types of limit-cycle bifurcation may be illustrated for the case of a two-
dimensional OP space by considering viscous motion in a potential V(¢,, ¢,) =
_ %l‘(d’i 4 ¢§) + Vo(¢z, ¢y) under the action of an azimuthal force wo{—¢y, ¢.},

dd: _ Vo ddy _ A
dt - “¢2 - w0¢y - a¢z I dt - /‘QSy +UJO¢: a¢y . (39)

If V(¢z,¢y) has n-fold symmetry, it will for sufficiently large values of the
control parameter pu develop n minima separated by saddles with heights of
O(|¢o|™), where |¢o| is the amplitude of the OP at minimum.

— For n > 3, the representation spanned by (¢, #;) is irreducible, and the
azimuthal force can in fact drive the system across the saddles, independent of
the value of the coupling constant wg (symmetry-induced limit cycle).




— For n = 2, on the other hand, the representation decomposes into two equi-
valent real representations spanned by ¢, and ¢,. In this case, the coupling
constant wg has to exceed a critical value in order to drive the system across
the saddle (coupling-induced limit cycle); for values of wy smaller than the
critical value, the system becomes trapped in a stationary state in one of the
two potential troughs.

3.2 Symmetry of Cycles

A cycle breaks the symmetry of the stationary state which is described by its
symmetry group Gs and the extended symmetry group Gs defined in (2.4,6).
The symmetry group of the cycle 8. consists fo all transormations g € Gs which
leave the orbit [.] of the cycle invariant:

G. = {g € G | [ggc] = [Oc]} . (3~10)

Further, the cycle 0.(t) = 0.(t + T) is left invariant under discrete time trans-
lations T(nT') forming a time lattice

Ir ={T(nT)|n=0, £1,...} . (3.11)

The eztended symmetry group G. of the cycle consists of all transformations
g € G, which leave the cycle invariant:

G =={g € 0Gs|g0c(t) =0.(t) Vi} . (3.12)

It consists of a product of the time lattice Zr and a group L which is isomorphic
to Ge¢:
Go=LxIr with LG, . (3.13)

According to the rule of minimally broken symmetry, G, is a maximal subgroup
of Gs. The extended symmetry group G. corresponds to the space group of a
spatial structure, and the group G to its point group.

The time lattice Zp gives rise to a Brillouin-zone (BZ) structure on the
Rew axis. In terms of the reciprocal lattice vector {2 := 27 /T, the first BZ is
given by

-2 <Rew < N2 (3.14)

(see Fig. 5). The analog of Bragg scattering by spatial lattices is the occurrence

Imw

Re®

- — ~afp — =
- ——af - =

Fig.5. “Brillouin zone” on the real frequency axis
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Fig.6. “Bragg scattering” at a time lattice: Linear response to a force at frequency w gives
rise to side bands at frequencies w & nf2 where 2 = 27 /T

of side-bands at frequencies w + nf2 in the linear response of the cycle to an
external force of frequency w (Fig. 6).

3.3 Destabilization of a Cycle

The linear stability of the cycle 8.(¢) is determined by the time evolution of
small perturbations ¥(t): 8.(¢) + 9(¢). Linearization of (2.1) about 6.(t) yields

the equation of motion

dv9
= L(t,p) -9 , (3.15)

where L(t) is a periodically time-dependent matrix of period T,

L(t) = 0B/08| =Lt+T). (3.16)

6 = Oc(t)

According to the Floquet-Bloch theorem, the normal modes of the cycle are
solutions of (3.15) of the form

Da(t) =, (t)e™ !, (3.17)

where v,,(t) is T-periodic, and Rew,, lies in the first BZ,

Yt +T)=¥,(t), ——=<Rewn< —. (3.18)
T T
The eigenvalues w, and eigenfunction % ,(¢) have to be found as solutions of
the eigenvalue problem

diy, .
We assume that the cycle 8.(t) is stable up to a second threshold pcz, where
an instability occurs with respect to a single mode:

dImw,
Im 2)=0, _— >0 . 3.20
w1 (pe2) du /1 " ( )

The type of instability is again determined by the real part of the eigenvalue
w; at threshold (see Fig.7):



