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Preface

This book concerns continuous-time controlled Markov chains and Markov
games. The former, which are also known as continuous-time Markov deci-
sion processes, form a class of stochastic control problems in which a single
decision-maker wishes to optimize a given objective function. In contrast,
in a Markov game there are two or more decision-makers (or players, or
controllers) each one trying to optimize his/her own objective function.

The main features of the control and game models studied in the book
are that the time variable is continuous, the state space is denumerable,
and the control (or action) sets are Borel spaces. Moreover, the transition
and reward rates of the dynamical system may be unbounded. Controlled
Markov chains and Markov games have many important applications in
arcas such as telecommunication networks. population and epidemic mod-
cls, engineering, operations research. ete. Some of these applications are
illustrated in this book.

We note that most of the material presented here is quite recent: it has
been published in the last six years, and it appears in book form for the
first time.

One of the main goals of this book is to study the so-called advanced
optimality criteria for controlled Markov chains (e.g., bias, overtaking, sen-
sitive discount, and Blackwell optimality). which are refinements of the
basic criteria, namely, discounted and average reward optimality. To make
this a self-contained book, we also give the main results on the existence of
controlled Markov chains and the basic optimality criteria. For the corre-
sponding technical details — some of which have been skipped here — the
reader can consult Guo and Hernandez-Lerma's  Continuous-Time Markov
Decision Processes: Theory and Applications [52].

A particular emphasis is made regarding the application of the results
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viil Continuous-Time Controlled Markov Chains and Markov Games

presented in the book. One of our main concerns is to propose assumnptions
on the control and game models that are casily verifiable (and verified) in
practice. Furthermore. we study an algorithm to solve a certain class of
control models, and establish some approximation results that allow us to
give precise munerical approximations of the solutions to some problems of
practical interest.

Hence, the book has an adequate balance between. on the one hand.
theoretical results and. on the other hand, applications and computational
isstes. It is worth mentioning that the latter were, somehow, missing in the
literature on continuous-time controlled Narkov chains.

Finally. the topic of zero-sum two-person continuous-time Markov
games, for both the basic discounted and average payoff and some
“advanced” optimality eriteria — bias and overtaking equilibria —— appears
for the first time in book form.

This book is mainly addressed to researchers in the fields of stochastic
control and stochastic games. Indeed. it provides an extensive. rigorous.
and up-to-date analysis of continuous-time controlled Markov chains and
Markov games. It is also addressed to advanced undergraduate and begin-
ning graduate students because the reader is not supposed to have a high
mathematical background. In fact, a working knowledge of calculus, linear
algebra. probability. and continnous-time Markov chains (at the level of.
say. Chapter 4 of R. Durrett’s book Essentials of Stochastic Processes [31])
should suffice to understand the material herein. As already mentioned, the
reader interested in the theoretical foundations of controlled Narkov chains
can consult [52].

We have carefully written this book, with great dedication and commit-

ment. We apologize. however. for any errors and omissions it might contain.

The authors. April 2011
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Chapter 1

Introduction

1.1. Preliminary examples

Before giving a formal definition of control and game models, we propose
two motivating examples.

1.1.1. A controlled population system

We describe next a controlled population system inspired by the models in
[52, Example 7.2] and [136, Sec. IV]. (In Sec. 9.4 below we will consider a
generalization of this controlled population system.) We call it a controlled
system because there is a controller (also known as a decision-maker) who
observes a random dynamical system, and takes actions so as to optimize
the system’s behavior according to a given optimality criterion.

The state space The state variable, denoted by i, is the population size,
which takes values in the state space

We suppose that the population system is observed continuously in time,
at times labeled ¢t > 0. The time horizon may be finite (that is, we observe
the state variable on a time horizon 0 < t < T', for some finite time 7' > 0)
or infinite (which means that the population system is observed at all times
t > 0). We will denote by x(t) € S the random state of the system at time
t > 0. We will refer to {x(#)};>0 as the state process.

The sources of variation of the population are described next.

The birth rate The population is subject to a natural birth rate, denoted
by A > 0. This means that each individual of the population can give birth
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to a new individual with a transition probability rate which equals A\. More
precisely. suppose that the population size is i € S at time ¢ > 0, and let
P [t.t+6] denote the probability that a new individual is born on the time
interval [t,t + d]. Then we have that
Pr[t,t+ 6]

lim —*

2 =\ YVt>0. (1.1)
5.0 0]

Note that, in (1.1), the “individual” birth rate A is multiplied by the pop-
ulation size i.

The death rate The population is also subject to a natural death rate
st > 0. So, if the population size is i at time t > 0, and P, [t.t + ¢] denotes
the probability that an individual dies on the time interval [¢,¢ + ], then
we have

P [t.t + 4]

lim

= Yt=>0. 1.2
610 m - ( )

The immigration rate At this point, note that the birth and death
rates described above are not controlled, meaning that the decision-maker
cannot modify them. That is why we called them the natural birth and
death rates. On the other hand, the immigration rate, defined next, may
be controlled by the decision-maker.

Put A = [a),as] C RT, and let @ € A be the controlled immigration rate.
The interpretation is that the decision-maker can encourage or discourage
immigration by following suitable immigration policies. Hence, when the
decision-maker chooses the control a € A, the probability P{[t,t+0] that an
immigrant individual arrives, on the time interval [t, t+4], at the population
under study when its size is ¢ at time t > ( verifies that
Pt t + 9]

lim —

) =a Vt>0. (1.3)
510 0

We assume that the controller takes actions continuously in time. So,
let a(t) in A, for t > 0. denote the controller’s action at time ¢.

The catastrophe rate In addition, we suppose that the population is
subject to “catastrophes”. The rate b € B = [by,by] C RT at which catas-
trophes occur is controlled by the decision-maker (for instance, by using
adequate medical policies or implementing fire prevention programs, the
controller can decrease the catastrophe rate b).
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Moreover, the catastrophe is supposed to have a random size. This
means that, if a catastrophe occurs when the population size is i € S,
then the probability that 1 < k < 7 individuals die in the catastrophe is
~i (k). We suppose that ~; (k) > 0 and that

Z vi(k) = 1.

1<k<i

Consequently, the transition rate from a state i > 0 to a state 0 < j < ¢
corresponding to a catastrophe under the action b € B is

b-7i(i = j). (1.4)

More explicitly, the rate b corresponds to the catastrophe, and then, condi-
tional on the catastrophe, i — j individuals perish with probability ~;(i — 7).
The new state of the system is thus j.

We denote by b(t) € B, for t > 0, the action chosen by the controller at
time ¢t > 0.

The action set As seen in the previous paragraphs, the controller chooses
his/her actions in the set A x B. We will refer to A x B as the action set.

The transition rate matrix Our previous discussion on the dynamics of
the system can be summarized by the transition rate matrix [g;;(a, b)]; jes.
Here, g;j(a,b) denotes the transition rate from the state i € S (row) to the
state j € S (column) when the controller chooses the actions a € A and
b € B. This transition rate matrix is

—a a 0 0 0 0
p+b  —(p+A)—a—>b Ata 0 0 0
by2(2) 200+ bya (1) —2(p+A)—a—-1b 2 +a 0 0
by3(3) by3(2) 3p+ bys (1) =3(p+A)—a—-b 3A+a 0

The matrix [g;;(a.b)]i jes above is constructed as follows. The transi-
tion rate from state ¢ to i + 1 is obtained by summing the corresponding
transition rates in (1.1) and (1.3). For the transition rate from i to i — 1
we proceed similarly, and we sum (1.2) and (1.4) for j =i — 1. Finally, the
transition rate from i to j, for 0 < j < i—1, is given by (1.4). The diagonal
terms q;;(a,b) are such that the rows of the transition rate matrix sum to
zero. This technical requirement comes from the fact that the transition
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probabilities sum to one (by rows), and so the corresponding derivatives
must sum to zero. Further details on this issue are given in Chapter 2.

Policies A control policy or simply a policy is a “rule” that prescribes
the actions chosen by the controller. Typically, a policy is a function of the
form

p(t.i) = (a.b) € A x B,

which is given the following interpretation: the controller observes the state
of the system x(t) =i € S at time t > 0, and then he/she takes the actions
a(t) = a € A and b(t) = b € B. The process {x(t),a(t),b(t)}i>0, which
describes the evolution of the system and the controller’s actions, is called
the state-action process.

The above defined policies are called Markovian because they depend
only on the current state of the system, say x(t), and the time variable ¢. In
general, however, although we will not consider them in this book, policies
can be history-dependent. This means that the actions a(f) and b(t) may
depend on the history {x(s),a(s),b(s)}o<s<t of the state-action process up
to time ¢. More specific classes of policies (such as randomized or stationary
policies) will be introduced in Chapter 2.

The reward rates We suppose that the controller earns rewards (or
incurs costs) continuously in time. Typically, the reward rates depend on
both the state of the system and the actions.

For this controlled population system, suppose that there is a reward
rate function R(i) depending on the population size i € S. Usually, R will
be an increasing function of i. In some particular cases, R will be a linear
function.

In addition, we assume that there is a cost rate 'y (i, a) associated with
the action ¢ € A when the population size is i € S. (The function
captures, e.g., the cost of the immigration policy, but also the benefits of
having a larger working population.) Similarly, the cost rate for controlling
the catastrophe rate b € B when the population size is i € S is denoted
])_V Cz(i, b)

Hence, if the decision-maker selects the actions (a(t),b(t)) € Ax B when
the state of the system is x(f) € S, at time ¢ > 0, then he/she obtains an
infinitesimal net reward

(R(x(t)) = Ci(x(t),a(t)) — Ca(x(t),b(t))) - 6

on the “small” time interval [t,t + d].
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The optimality criterion The optimality criterion is concerned with the
performance evaluation of the policies. As an illustration, if the controller
wants to maximize his/her total expected reward on the finite horizon [0, 77,
then he/she will consider

T
o E¥ /“ [R(x(t)) — Cy(x(t),a(t)) — Ca(x(t), b(t))]dt (1.5)

for each policy ¢. In (1.5), E¥ denotes expectation under the policy .
Hence, the finite horizon control problem consists in finding a policy with
the maximal total expected reward (1.5).

Suppose now that there is a depreciation rate a > 0 (related to the
inflation rate), and that the controller wants to maximize his/her total
expected rewards brought to their present value. The discounted optimality
criterion consists in finding a policy ¢ that maximizes

0

E® [/X e~ R(2()) — Cr(x(t), a(t)) — Ca(a(t), b(f))]df}

Furthermore, we can assume that the controller has a given budget,
say 0, for the (discounted) expenses on the immigration policy and the
catastrophe prevention programs. In this case, the controller has to find
the policy that maximizes the expected discounted reward

E¥ [/x e:”“'R(;r(t))dt]

JO

within the class of policies that satisfy the constraint

- U: e Ci((t), a(®)) + Ca(=(®), b(t))]df} < 0.

This is a constrained control model similar to those that we will study in
Chapter 8.

Conclusions Finally, we summarize the main elements of the controlled
population system described above.

The state space. (As in the example in this section, the control models
studied in this book have denumerable state space.)
The action set.

The transition and reward rates.
The optimality criterion.
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1.1.2. A prey-predator game model

In the control model described in Sec. 1.1.1, there was a single controller
handling the stochastic dynamical system. In a game model. we suppose
that there are several players. Our next example is a simplified version of
the Kolmogorov prey-predator model, which is based on the Lotka—Volterra
equation; see, e.g., [19, 39].

The state space We assume that there are two interacting species in a
given environment: species 1 is the prey, while species 2 is the predator. The
bidimensional state variable (7, j) stands for the total population i and j of
the prey and predator species, respectively. So, the state space is

S=1{0.1,2,...} x {0,1.2,...}.

The state process x(t) = (i(t), j(t)), for t > 0. gives the (random) size of
the two populations at time t > 0. As in the control model in Sec. 1.1.1,
the state variable is observed continuously at times ¢t > 0.

The action set The prey species takes actions a € A C R. The action a
models the struggle for survival of the prey (for instance, moving to safer
areas under the hunting pressure of the predator). The predator species
takes actions b € B C R, which model its hunting intensity (e.g., involv-
ing more individuals in hunting). Hence, the action set for species 1 is A,
while B is the action set for species 2.

Therefore, this model is a two-player game in which the prey and preda-
tor species compete.

Strategies of the players The players use Markov policies (as defined
in Sec. 1.1.1). More precisely, the players observe the state of the system
(i(t), j(t)), and then they independently choose their actions a(t) € A and
b(t) € B. Hence, the policies of the players are given by functions
®:[0,00) xS —A and ¢:[0,00) xS — B,

for species 1 and 2, respectively, which depend on the state of the system
and the time ¢ > 0.

A usual convention in game models is that the players’ policies are
referred to as strategies, rather than policies.

The transition rates We assume that the two species have natural birth
and death rates. Namely, the birth and death rates of the prey species are
A1 > 0 and py > 0, respectively, while the corresponding birth and death
rates of the predator species are XAy > 0 and s > 0.



