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Preface

Multi-label learning concerns supervised learning problems in which each instance
may be associated with multiple labels simultaneously. A key difference between
multi-label learning and traditional binary or multi-class learning is that the labels in
multi-label learning are not mutually exclusive. Multi-label learning arises in many
real-world applications. For example, in web page categorization, a web page may
contain multiple topics. In gene and protein function prediction, multiple functional
labels may be associated with each gene and protein, since an individual gene or
protein usually performs multiple functions. In automated newswire categorization,
multiple labels can be associated with a newswire story indicating its subject cat-
egories and the regional categories of reported events. Motivated by the increasing
number of applications, multi-label learning has attracted significant attention in data
mining and machine learning recently.

In comparison with traditional binary and multi-class classification, multi-label
classification is more general and is thus more challenging to solve. One significant
challenge in multi-label learning is how to effectively exploit the label structure to
improve classification performance. Since the labels in multi-label learning are of-
ten correlated, how to measure and capture the correlations in the label space for
improved prediction is crucial. This problem becomes particularly important when
more sophisticated relations, such as hierarchical structures, exist among labels. An-
other challenge of multi-label learning lies in the class imbalance problem. When
each label is modeled independently, the number of instances related to a specific
label is much less than the number of instances that are not related to this label. In
this case, it is difficult to build a highly accurate classifier for these labels without
considering label correlations. The third challenge is concerned with the effective-
ness and efficiency of multi-label learning for large-scale problems, especially when
both the data dimensionality and the number of labels are large.

Similar to other data mining and machine learning tasks, multi-label learning also
suffers from the so-called curse of dimensionality. Dimensionality reduction, which
extracts a small number of features by removing irrelevant, redundant, and noisy
information, is an effective way to mitigate the curse of dimensionality. Although
dimensionality reduction has been well studied in the literature, we lack a unified
treatment of multi-label dimensionality reduction that includes both algorithmic de-
velopments and applications. In this monograph, we give a selective treatment of di-
mensionality reduction for multi-label learning with emphasis on our own work. We
cover a wide variety of topics, ranging from methodological developments to theo-
retical properties, computational algorithms, and applications. Specifically, this book

Xi



Xii Contents

focuses on the following fundamental research questions posed by multi-label dimen-
sionality reduction: How to fully exploit label correlations for effective dimensional-
ity reduction; How to scale dimensionality reduction algorithms to large-scale prob-
lems; How to effectively combine dimensionality reduction with classification; How
to derive sparse dimensionality reduction algorithms to enhance model interpretabil-
ity; How to perform multi-label dimensionality reduction effectively in practical ap-
plications. To expedite the applications of these algorithms, a MATLAB® software
package that implements many popular dimensionality reduction algorithms is pro-
vided online at http://www.public.asu.edu/~jye02/Software/MLDR/. We hope that
this book will appeal to both researchers and practitioners in diverse areas working
on multi-label learning.

We would like to thank many people who have supported, encouraged, and in-
spired us during the preparation of this book. We are deeply indebted to Prof. Sudhir
Kumar and his FlyExpress team, who provided support in the exploration of gene
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including Betul Ceran, Rita Chattopadhyay, Jianhui Chen, Pinghua Gong, Jun Liu,
Yashu Liu, Zhi Nie, Qian Sun, Jie Wang, Zhen Wang, Shuo Xiang, Sen Yang, Lei
Yuan, Zheng Zhao, Jiayu Zhou, and Chao Zhang. Each and every member of this
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teractions. Many of our colleagues provided thoughtful reviews. We thank Jun Li,
Shan Yang, Hang Zhang, and Hou Zhou for their feedback. We would like to thank
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tional Science Foundation for supporting our research on multi-label dimensionality
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Chapter 1

Introduction

1.1 Introduction to Multi-Label Learning

Supervised learning is concerned with inferring the relations between input in-
stances and class labels. In traditional classification tasks, each instance is associated
with one class label. However, in many real-world scenarios, one instance may be
associated with multiple labels. For example, in news categorization, a piece of news
regarding Apple’s release of a new iPhone is associated with both the label busi-
ness and the label rechnology. In other words, each instance is associated with a set
of labels instead of only one label. Multi-label learning is a machine learning field
devoted to learning from multi-label data in which each instance is associated with
potentially multiple labels. A major difference between multi-label learning and tra-
ditional binary or multi-class learning is that the labels in multi-label learning are
not mutually exclusive, suggesting that each instance may be relevant to multiple
labels. Thus, one of the key challenges of multi-label learning is how to exploit the
correlations among different labels effectively.

In this book, we assume that each instance in the training set is represented as a
pair of vectors, one for the input features and the other for the output labels. Multi-
label learning concerns the prediction of the labels of unseen instances by building a
classifier based on the training data. Formally, let & and )’ denote the input instance
space and the output label space, respectively. In multi-label learning, the label space
Y is defined as Y = {0, 1}’“, where k is the number of labels. That is, the jth com-
ponent of the label vector is [ if the instance is relevant to the jth label, and it is 0
otherwise. Similar to traditional classification, given a training data set, the goal of
multi-label learning is to learn a classifier f : X — ), which predicts the labels of
each instance x € X. Specifically, the output of the classifier f for a given instance
x e Xis

F) = [f1(x), fa (), fr(x)]T, (1.1)

where f;(x) (j = 1,---, k) is either I or 0, indicating the association of x with the
jth label. In the following, the set of labels is denoted as £ = {C},--- ,Ci}.
Multi-label learning finds applications in many real-world applications, such as
text categorization [167,279], image annotation [34, 126], bioinformatics [28, 279],
3D hand pose estimation [216], and biological literature classification [128]. Mo-
tivated by the increasing number of applications, multi-label learning has recently
attracted significant attention, and many algorithms have been proposed [190, 235,



2 Multi-Label Dimensionality Reduction

237]. These methods are reviewed in Section 1.4 and can be divided into two major
categories:

1. Problem transformation: This class of methods first transforms the multi-label
learning problem into a series of single-label problems, which are then solved
using existing single-label learning methods.

2. Algorithm adaptation: This class of methods solves the multi-label problems
directly by adapting existing methods for single-label learning.

Similar to other machine learning and data mining tasks, multi-label learning
also suffers from the so-called curse of dimensionality [21]. Although there has been
extensive research on dimensionality reduction in the literature, multi-label dimen-
sionality reduction has not been well explored [8,273,280]. This book is devoted
to the study of multi-label dimensionality reduction, which focuses on extracting a
small number of features from multi-label data by removing the irrelevant, redun-
dant, and noisy information while exploiting information from the label space such
as the correlation among different labels. Specifically, we give a unified treatment of
multi-label dimensionality reduction approaches in methodological developments,
theoretical properties, computational algorithms, and applications.

In the rest of this chapter, we will briefly introduce multi-label learning and
dimensionality reduction, including existing algorithms, applications, and related
work. We will also highlight the main challenges of multi-label dimensionality re-
duction.

1.2 Applications of Multi-Label Learning

Multi-label learning has been applied successfully in many real-world applica-
tions. In this section, we present several representative examples, including scene
classification, text categorization, functional genomics analysis, and gene expression
pattern image annotation.

1.2.1 Scene Classification

Humans are very proficient at perceiving natural scenes and understanding their
contents. In scene classification, the task is to determine the associated semantic la-
bels, such as mountain, lake, or party, for given images. Scene classification finds
applications in many areas, including content-based image indexing and content-
sensitive image enhancement [34]. For example, many current digital library sys-
tems support content-based image retrieval, which allows the user to retrieve images
that are similar to a given query image [105]. In this case, knowledge of the seman-
tic labels of the query image can reduce the search space and improve the retrieval
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(A) Scene 1 (B) Scene 2

FIGURE 1.1: Examples of multi-label scenes. The first scene (A) is associated with
the labels “lake” and “mountain”, and the second scene (B) is associated with the
labels “river” and “mountain”.

accuracy. Since a natural scene may contain multiple objects, each image can be as-
sociated with multiple labels. Hence, scene classification is naturally a multi-label
learning problem. For example, Figure 1.1(A) shows an image associated with the
labels “lake™ and “mountain™; Figure 1.1(B) shows an image associated with the
labels “river” and “mountain”.

1.2.2 Text Categorization

Text Categorization (TC) is the task of classifying text documents into one or
more of a set of predefined categories or subject codes [131,208]. Originally dating
back to the early 1960s, the effectiveness of text categorization has been improved
significantly in the past decades mainly due to the advances of machine learning
methods [131]. Text categorization has been applied in various fields, including web
page categorization using hierarchical labels, detection of text genre, text (or hyper-
text) documents classification given a predefined label set, personalized information
delivery, and content filtering [208]. Typically, the predefined labels (or categories)
in text categorization are not assumed to be mutually exclusive; thus text catego-
rization can naturally be modeled as a multi-label learning problem. For instance,
consider labels business, technology, entertainment, and politics in news categoriza-
tion; a news article about Apple’s release of a new iPhone may be labeled with both
the label business and the label technology.

When applying multi-label learning to perform text categorization, the first step
is to encode documents using a suitable representation, such as the ones based
on the vector space model [279] and the binary representation [140]. In the past,
many multi-label learning algorithms have been proposed to perform text categoriza-
tion [87,136,167,206,240,279]. One well-known algorithm in text categorization is
BoosTexter, which extends the classical boosting algorithm AdaBoost [80] to handle
multi-label data. Some other algorithms include the Bayesian approach [167] using
the mixture model coupled with the Expectation-Maximization (EM) algorithm, and
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the Maximal Figure-of-Merit (MFoM) approach [87]. We will review existing multi-
label learning approaches in Section 1.4.

One widely used benchmark data set in multi-label text categorization is the
Reuters-21578 data set'. This data set was originally collected and labeled by the
Carnegie Group, Inc. and Reuters, Ltd. in the course of developing the CONSTRUE
text categorization system. Reuters-21578 consists of 21,578 Reuters newswire doc-
uments that appeared in 1987. Almost all documents in the Reuters collection come
with title, dateline, and text body, and the number of topics (labels) is 135. In particu-
lar, three widely used subsets of the Reuters-21578 data set have been extracted [140]
by identifying the labels that suggest parent—child relationships, and the labels are or-
ganized in a hierarchical structure, as shown in Figure 1.2. Note that the roots of the
three category trees are virtual categories.

Another data set that has become very popular for text categorization in recent
years is the Reuters Corpus Volume 1 (RCV1) data set? [155]. The RCV1 data set
consists of over 800,000 manually categorized newswire stories recently made avail-
able by Reuters, Ltd. for research purposes. Similar to the Reuters-21578 data set,
the labels in the RCV1 data set are organized in a hierarchical structure. The origi-
nal data set is referred to as RCV1-v1, and a corrected version called RCV1-v2 was
generated and has become more popular in text categorization research. More details
on this data set can be found in [155].

1.2.3 Functional Genomics Analysis

Functional genomics is an important field in bioinformatics. It studies gene and
protein functions by conducting large-scale analysis on a vast amount of data col-
lected by genome projects [123, 159]. For example, DNA microarrays allow re-
searchers to simultaneously measure the expression levels of thousands of differ-
ent genes, and overwhelming amounts of data are produced [161]. Recently, a large
body of research has been devoted to automatic analysis of microarray data [159].
In automated gene expression analysis, the task is to predict the functions for genes.
Generally, it is based on the assumption that genes with similar functions have sim-
ilar expression profiles in cells [123]. Note that each gene may be associated with
multiple functions in functional genomics. When the functions are considered as la-
bels, the function prediction problem in functional genomics can be modeled as a
multi-label learning problem.

A widely used benchmark data set in multi-label learning for functional genomics
is the Yeast data set [38,74]. The Yeast data set consists of microarray expression
data and phylogenetic profiles from the budding yeast Saccharomyces cerevisiae. It
contains 2417 samples, and each sample is represented as a 103-dimensional feature
vector’. Each sample (gene) is associated with a subset of a total of 190 functional la-
bels. The functional classes (labels) are organized in a tree structure, which is known
in the literature [38, 74]. This data set is preprocessed in [74] and only the function
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