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FOREWORD

I have lived the greater part of my mathematical life in the unit disk of the
complex plane. From afar the disk may seem a constraining environment, but
to me, as to many predecessors, its terrain has offered unending fascination.

These notes focus on a family of Hilbert spaces that live inside the Hardy
space H? of the disk. The spaces emerge from a viewpoint developed by Louis
de Branges and were originally investigated around 1966 by de Branges in col-
laboration with James Rovnyak [14]. My own acquaintance with de Branges’s
viewpoint began, somewhat belatedly, with a 1984 lecture of his I heard. One
of de Branges’s key ideas is the notion of a complementary space, a general-
ization of the notion of orthogonal complement. In an effort to understand
this notion I tried to see how it applies in a setting with which I was familiar,
which took me back to the spaces of de Branges and Rovnyak. These spaces,
and their vector-valued analogues, are the setting for the operator model
theory of de Branges and Rovnyak [15]. My initial motivation was to under-
stand the basic structure of the (scalar-valued) de Branges-Rovnyak spaces,
and to understand the relation between the de Branges-Rovnyak model the-
ory and the better known model theory of B. Sz.-Nagy and C. Foias (again,
in the scalar-valued case). It soon became clear that, besides possessing a
fascinating internal structure, the spaces of de Branges and Rovnyak have
a role to play in several questions in function theory I had previously con-
sidered, and several additional ones as well. The aim of these notes is to
describe some of what has been learned thus far about the structure of the
de Branges—Rovnyak spaces and about their function-theoretic connections.

Chapter I introduces several Hilbert space notions, including that of a
complementary space, needed in the sequel. The remaining chapters are
devoted to an exploration of the structure of the spaces of de Branges and
Rovnyak, which are introduced in Chapter II. There is one of these spaces
associated with each nonconstant function b in the unit ball of H®; the
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space associated with b is denoted by H(b). A related space, denoted H(b),
arises naturally in its study. The spaces H(b) and H(d) are invariant under
the backward shift operator, and the restrictions of the backward shift to
the spaces H(b) comprise the simplest class of de Branges-Rovnyak model
operators.

In Chapter III, Cauchy integral representations of the spaces H(b) and
H(b) are derived. In the case of H(b), the more complicated of the two
cases, the representation gives an isometry between H(b) and the H? space
of the measure on the unit circle whose Poisson integral is the real part of

+5b
1-0

The structures of H(b) and H(b) are sensitive in crucial ways to whether

the function

b is or is not an extreme point of the unit ball of H*. For example, these
spaces are invariant under the forward shift operator if and only if b is not an
extreme point. Chapter IV is devoted to the case where b is not an extreme
point, and Chapter V to the case where it is an extreme point.

In Chapter VI it is shown that two classical theorems in function the-
ory, C. Carathéodory’s theorem on angular derivatives, and the theorem of
A. Denjoy and J.Wolff on iteration, fit naturally within the context of the
spaces ‘H(b). Chapter VII sketches a partial extension of Carathéodory’s
theorem to higher derivatives.

Chapters VIII-X address a variety of questions concerning the spaces
H(b) and H(b). For example, the conditions under which H(b) and H(b)
coincide are determined, and the connection between H(b) and so-called
rigid functions in H' is explained. The concluding Chapter XI contains brief
mention of a few additional topics of current interest.

A large portion of the results presented here are already in the literature,
and references to original sources are provided. Most references are confined
to the Notes sections at the ends of most chapters. The treatment here, it is
hoped, offers improvements over previous ones, thereby making the subject
more accessible.

A preliminary version of these notes, under the title Function Theory in
the Unit Disk from a Hilbert Space Perspective, was completed in 1991 and
circulated to a few colleagues and students. That version has been revised to
take account of recent developments and the comments of Wiley’s reviewers.
The author expresses his gratitude to the reviewers for their very helpful sug-
gestions. He is also grateful to José Barria for detecting numerqus corrections
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in the preliminary version. So as to avoid the task of renumbering the list
of references, the references added after the completion of the preliminary
version have been put in a supplementary list.

Besides possessing a standard background in real and complex analysis,
functional analysis, and operator theory, the reader of these notes is assumed
to be familiar with the theory of Hardy spaces in the unit disk. The material
in the initial chapters of any of the standard references on Hardy spaces, such
as the books of P. L. Duren [S2] and J. B. Garnett [27], will be adequate.
Basic properties of Toeplitz operators will be needed from time to time. The
book of R. G. Douglas [S1] is a good reference. Someone with the preceding
prerequisites will find the treatment here reasonably self-contained.

These notes grew out of my 1989 lectures in the University of Arkansas
Annual Lecture Series in the Mathematical Sciences. I am deeply indebted
to the University of Arkansas for its splendid hospitality. Special thanks
are due to the conference organizers: John Akeroyd, John Duncan, Daniel
Luecking, Itrel Monroe, and William Summers.

Berkeley, California
December 22, 1993



CONVENTIONS

The following standard conventions in notation and terminology are used

in these notes.

All Hilbert spaces considered are assumed to be complex and separable.

2. Subspaces of a Hilbert space are assumed to be closed. The terms “vector

10.

subspace” and “linear manifold” are used to designate possibly nonclosed
subspaces.

Hilbert space operators are assumed to be linear.

A scalar multiple of the identity operator on a Hilbert space is identified
notationally with the corresponding scalar.

If H is a Hilbert space, then (-,-)g and || - ||z denote the inner product
and norm in H. The subscript will be modified in certain cases.

The open unit disk in the complex plane is denoted by D and its boundary,
the unit circle, by 0D.

L? denotes the standard Lebesgue space with respect to normalized Lebesgue
measure on OD. The corresponding Hardy space is denoted by H?; in the
usual way, it will be regarded either as a subspace of L? or as a space
of holomorphic functions in D, as convenience dictates. The space of
functions in HP that vanish at the origin is denoted by H{. (The cases
p = 1,2, 00 are the main ones of interest here.)

The inner product and norm in L? are denoted by (-,-) and || - ||2.

The shift operator on H? is denoted by S : (Sf)(z) = 2f(2). It’s adjoint,
the backward shift, is given by (S* f)(z) = (f(z) — £(0))/=2.

If w and v are vectors in the Hilbert space H, then u ® v denotes the

rank-one operator on H that sends the vector z to the vector (z,v),u.

xi
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CHAPTER 1

HILBERT SPACES INSIDE HILBERT SPACES

This chapter contains some general facts about Hilbert spaces and Hilbert
space operators that are needed in the investigations to follow. The theme
is Hilbert spaces that live inside larger Hilbert spaces. A Hilbert space
contained boundedly in a larger Hilbert space can be realized as an operator
range. The complementary space of an operator range is defined when the
operator is a contraction. The approach to complementary spaces employed
here emphasizes the operator viewpoint, whereas the original approach of
de Branges is more geometric. The two approaches are reconciled in one of
the notes at the end of the chapter.

A basic question one encounters in dealing with contained Hilbert spaces
is that of recognizing when a given vector in the containing space also lies
in the contained one. An often useful criterion will be given, which, for
the complementary space associated with a given contraction, relates the
question to the analogous one for the adjoint of the contraction.

Another basic issue is the relation between factorization of a contraction
and decomposition of its associated complementary space. A general result
along these lines will be established.

(I-1) Bounded and Contractive Containment. If H is a Hilbert
space, one says that another Hilbert space is contained boundedly in H if it
is a vector subspace of H and if the inclusion map of it into H is bounded.
If the inclusion map is a contraction, one says that the second Hilbert space
is contained contractively in H.

Examples come readily to mind. Every subspace of H is contained con-
tractively (in fact, isometrically) in it. If H is somehow supplied with a
second inner product giving an equivalent norm, then H equipped with the
new inner product is contained boundedly in H equipped with the original
one, and vice versa. If y and v are positive measures on the same sigma-

algebra and p dominates v (i.e., is at least as large on every measurable set),
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then L?(u) is contained contractively in L%(v).

(I-2) Operator Ranges. If A is a bounded operator from the Hilbert
space H; into the Hilbert space H, then we define M(A) to be the range of
A with the Hilbert space structure that makes A a coisometry from H; onto
M(A). Thus, if z and y are vectors in H; and if they are orthogonal to the
kernel of A (or even if only one of them is orthogonal to the kernel of A),
then

(Az, Ay)M(A) = (2, y)H,-
The space M(A) is contained boundedly in H, and if A is a contraction it is
contained contractively in H. Every Hilbert space contained boundedly in
H is such an operator range; it is, namely, the range of the inclusion map of
it into H.

(I-3) Transfer of Linear Functionals. Suppose H, H; and A have the
meanings above, and let y be a vector in H. The restriction to M(A) of the
linear functional on H induced by y is then a bounded linear functional on
M(A). Tt is thus induced, relative to the inner product in M(A), by a vector
in M(A). That vector is AA*y, as one sees from the calculation

<A$’ y>H = <x7A*y)H1 = (szAA*y)M(A)-

(I-4) Douglas’s Criterion. The following criterion of R. G. Douglas
is often useful in establishing containment relations among spaces and in
showing that an operator maps one space into another: Let H, H; and H,
be Hilbert spaces, and let A and B be bounded operators from H;, and H,,
respectively, into H. Then the operator inequality AA* < BB* 1s neces-
sary and sufficient for the ezistence of a factorization A = BR with R a
contraction from H, into Ha.

That the factorization implies the inequality is obvious. To establish the
other half of the criterion one argues just as in the proof of the polar de-
composition theorem. Namely, if the inequality holds, one first defines an
operator @ from the range of B* to the range of A* by setting QB*z = A*z
(z € H). The inequality implies that the definition makes sense and that
Q does not increase norms. Thus @ extends by continuity to a contraction
from the closure of the range of B* into H;. We can finally extend Q to a
contraction from H, into H; by letting it be the zero operator on the or-
thogonal complement of the range of B*. The operator R = Q* then has the
desired properties.
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(I-5) Consequences. The following conclusions are immediate conse-
quences of Douglas’s criterion.

(i) The space M(A) is contained contractively in the space M(B) if and
only if AA* < BB*.

(i1) The spaces M(A) and M(B) coincide as Hilbert spaces if and only if
AA* = BB*. In particular, M(A) = M((AA*)'/?).

(iii) The space M(A) is an ordinary subspace if and only if A is a partial
isometry.

(I-6) Complementary Spaces. If A is a Hilbert space contraction, then
the space M((1—AA*)!/?) is called the complementary space of M(A) and is
denoted by H(A). If M(A) is an ordinary subspace, in other words, if A is a
partial isometry, then AA* and 1 — AA* are complementary projections, and
‘H(A) is the ordinary orthogonal complement of M(A). In the contrary case
the intersection M(A)NH(A), called here an overlapping space, is nontrivial,

as will be seen shortly.

(I-7) Intertwining Relation. If A is a Hilbert space contraction, then
A(1— A*A)/? = (1 — AA*)1/24,

The proof starts from the obvious equality A(1 — A*A4) = (1 — AA*)A,
which can be iterated to give A(1— A*A)" = (1— AA*)" A for every positive
integer n. Hence, if p is any polynomial, then Ap(1 — A*4) = p(1 — AA*)A.
Now take a sequence (pn)$° of polynomials that converges uniformly on the
interval [0, 1] to the square-root function. Then p,(1—A*A4) — (1 —A*A)'/2
in norm and p,(1 — AA*) — (1 — AA*)'/? in norm, and the desired equality
follows.

(I-8) Relation Between H(A) and H(A*). Let A be a contraction from
the Hilbert space Hy into the Hilbert space H. Then the vector  in H belongs
to H(A) if and only if A*z belongs to H(A*). If z1 and z, are two vectors
in H(A), then

(z1,22)n(4) = (21, T2)H + (A% 21, A*T2)24(4%)-

In fact, the inclusion A*H(A) C H(A*) follows immediately from the
intertwining relation (I-7). Suppose on the other hand that z is a vector in
H such that A*z is in H(A*), say A*z = (1 — A*A)!/?y, where y is in H;.
Then the equality ¢ = (1 — AA*)z + AA*z can, in virtue of the intertwining
relation, be rewritten as

z=(1—AA)Y?(1— AA*)/?z + Ay],
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which shows that z is in H(A).

To obtain the expression for the inner product, let z; and x5 be two vectors
in H(A), and for j = 1,2 let y; be the vector in H; that is orthogonal to the
kernel of 1 — A*A and satisfies A*z; = (1 — A*A)!Y/?y;. For each j we then

have

z; = (1— AA*)V2[(1 — AA*) %z + Ay

and, because of the way y; was chosen, the vector in square brackets is
orthogonal to the kernel of 1 — AA*, as one easily verifies. Hence

(21, 22)n(a) = (1 — AA*) 22, + Ay;, (1 — AA*)Y 220 + Ayo)m.

When one expands the inner product on the right side one obtains four
terms. One term is ((1 — AA*)Y/2z,,(1 — AA*)!/22,)y, which is the same
as (r1,Z2)H — (A*z1, A*z2)H,. Another is (Ay1, Ay2)n. There are then two
“cross-product” terms, of which one is ((1 — AA*)/2z;, Ayp)y. Because of
the intertwining relation (I-7) this can be rewritten as

(A*z1, (1~ A"A) Py2)y,

which equals (A*z;, A*z,)p,. The other cross-product term has the same
value. All together, then, we have

(z1,T2)n4) = (@1, Z2)H + (A% 21, A% 22) 1, + (A1, Ay2) 1
= (z1,@2)m + (1 — A*A) Py1, (1 — A*A) o) m, + (A, Aya)
= (z1,22)8 + (y1,92) H,

= (z1,%2)H + (A*z1, A*Z2) 340,

as desired.

(I-9) Description of the Overlapping Space. If A is as above, then
M(A)NH(A) = AH(A*).

This follows immediately from (I-8) (with the roles of A and A* reversed).
Notice that the overlapping space is trivial if and only if A(1—A*A4)1/2 = 0. If
that happens then also A(1—A*A) =0,s0 A = AA*A. Then AA* = (AA*)?,
which means AA* is a projection (that is, A is a partial isometry), and
M(A) and H(A) are ordinary subspaces of H, orthogonal complements of
each other.



