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Preface

Inverse problems are mathematical problems that arise when our goal is to re-
cover “interior” or “hidden” information from “outside"—or otherwise available—noisy
data. For example, an inverse problem arises when we reconstruct a two-dimensional
(2D) or three-dimensional (3D) medical image from tomography data, or when we
reconstruct a sharper image from a blurred one. When we solve an inverse problem,
we compute the source that gives rise to some observed data, using a mathematical
model for the relation between the source and the data.

Inverse problems arise in many technical and scientific areas, such as medical and
geophysical imaging, electromagnetic scattering, and nondestructive testing. Image
deblurring arises, e.g., in astronomy or in biometric applications that involve fingerprint
or iris recognition. The underlying mathematics is rich and well developed, and there
are many books devoted to the subject of inverse (and ill-posed) problems.

So why yet another book? My experience from teaching this subject to engi-
neering graduate students is that there is a need for a textbook that covers the basic
subjects and also focuses on the computational aspects. Moreover, | believe that
practical computational experience is important for understanding applied mathemat-
ics, and therefore the textbook should include a number of tutorial exercises to give
the reader hands-on experience with the difficulties and challenges associated with the
treatment of inverse problems.

The title of the book reflects this point of view: our insight about inverse prob-
lems must go hand-in-hand with our algorithms for solving these problems. Solving
an inverse problem is rarely a matter of just picking an algorithm from a textbook, a
research paper, or a software package. My experience is that each new inverse prob-
lem has its own features and peculiarities, which must be understood before one can
decide on an algorithm (or, sometimes, develop a new one).

The present book is intended as a quite gentle introduction to a field character-
ized by advanced mathematics and sophisticated numerical methods. The book does
not pretend to tell the whole story, to give all the details, or to survey all the important
methods and techniques. The aim is to provide the reader with enough background
in mathematics and numerical methods to understand the basic difficulties associated
with linear inverse problems, to analyze the influence of measurement and approxi-
mation errors, and to design practical algorithms for computing regularized/stabilized
solutions to these problems. Provided with this insight, the reader will be able to start
reading the more advanced literature on the subject; indeed, anyone who wants to
work in the area of linear inverse problems is advised to also consult some of the many
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well-written books on the subject, such as [3], [8]. [14], [23], [24], [32]. [64], [74].
[76].

The focus of the book is on linear inverse problems in the form of Fredholm in-
tegral equations of the first kind. The presentation starts with a summary of the most
important properties of linear inverse problems in the continuous setting. Then we
briefly discuss discretization methods and describe how many of the properties of the
integral equation directly carry over to the discretized system—in the form of a linear
(perhaps overdetermined) system of equations. The next chapter is devoted to sim-
ple regularization methods for computing regularized solutions in the form of filtered
spectral expansions; this is an important class of methods which clearly illustrates the
basic ideas of regularization. Since no regularization algorithm is complete without a
method for choosing the regularization parameter, we also include a discussion of some
state-of-the-art parameter choice methods. We conclude with a chapter on iterative
methods for large-scale problems, a chapter with a some real-world problems, and a
chapter on a more general class of regularization methods. Sections and exercises
marked with a * denote more advanced material that can be skipped in a basic course.

At the end of each section we give a number of exercises, most of them in-
volving numerical experiments with the MATLAB package Regularization Tools [31],
[33], which further illustrate the concepts and methods discussed in the correspond-
ing section. The package is available from Netlib at http://www.netlib.org/numeralgo
and from the MATLAB Central File Exchange at http://www.mathworks.com/
matlabcentral /fileexchange/loadFile.do?objectld=52. It must be emphasized that the
package is mainly intended for teaching and experimenting with small-scale inverse
problems, and therefore the package is not designed to be efficient for large problems.

Acknowledgments. This tutorial grew out of a series of lectures given at the
Fifth Winter School in Computational Mathematics in Geilo, Norway, in February of
2005. The atmosphere there was very positive, and | enjoyed the chance to teach one
of my favorite subjects to a dedicated audience. The presentation is based on many
years of experience from numerous collaborations, too many to mention here, and |
thank everyone | worked with for inspiration and motivation. In particular, | thank
Zdenék Strakos$ for insightful discussions about regularizing iterations, Maurizio Fedi
for sharing his insight in potential field inversion, Sgren Holdt Jensen for introducing
me to all kinds of noise, Jim Nagy for showing me that structure is everything in
image deblurring, and Bill Lionheart for all kinds of thoughts on inverse problems. |
also thank Ann Manning Allen, Elizabeth Greenspan, Nancy Griscom, and Sara Murphy
from SIAM for their competent handling of this book.

Per Christian Hansen
Lyngby, 2009
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Chapter 1

Introduction and Motivation

If you have acquired this book, perhaps you do not need a motivation for studying
the numerical treatment of inverse problems. Still, it is preferable to start with a few
examples of the use of linear inverse problems. One example is that of computing the
magnetization inside the volcano Mt. Vesuvius (near Naples in Italy) from measure-
ments of the magnetic field above the volcano—a safe way to monitor the internal
activities. Figure 1.1 below shows a computer simulation of this situation; the left
figure shows the measured data on the surface of the volcano, and the right figure
shows a reconstruction of the internal magnetization. Another example is the com-
putation of a sharper image from a blurred one, using a mathematical model of the
point spread function that describes the blurring process; see Figure 1.2 below.

Figure 1.1. Left: Simulated measurements of the magnetic field on the sur-
face of Mt. Vesuvius. Right: Reconstruction of the magnetization inside the volcano.

Sharp image Blurred image Reconstructed image

Figure 1.2. Reconstruction of a sharper image from a blurred one.
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Inverse Problem

One of these is known Known

VRN ey

Input |=| System |=( Output

Figure 1.3. The forward problem is to compute the output, given a system
and the input to this system. The inverse problem is to compute either the input
or the system, given the other two quantities. Note that in most situations we have
imprecise (noisy) measurements of the output.

Both are examples of a wide class of mathematical problems, referred to as
inverse problems. These problems generally arise when we wish to compute informa-
tion about internal or otherwise hidden data from outside (or otherwise accessible)
measurements. See Figure 1.3 for a schematic illustration of an inverse problem.

Inverse problems, in turn, belong to the class of ill-posed problems. The term was
coined in the early 20th century by Hadamard who worked on problems in mathematical
physics, and he believed that ill-posed problems do not model real-world problems (he
was wrong). Hadamard'’s definition says that a linear problem is well-posed if it satisfies
the following three requirements:

e Existence: The problem must have a solution.

e Uniqueness: There must be only one solution to the problem.

e Stability: The solution must depend continuously on the data.

If the problem violates one or more of these requirements, it is said to be ill-posed.
The existence condition seems to be trivial—and yet we shall demonstrate that
we can easily formulate problems that do not have a solution. Consider, for example,

the overdetermined system
1y _(1
2 —\22)/"

This problem does not have a solution; there is no x such that x = 1 and 2x = 2.2.
Violations of the existence criterion can often be fixed by a slight reformulation of
the problem; for example, instead of the above system we can consider the associated
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least squares problem

(2) (22)

which has the unique solution x = 1.08.

The uniqueness condition can be more critical; but again it can often be fixed
by a reformulation of the problem—typically by adding additional requirements to the
solution. If the requirements are carefully chosen, the solution becomes unique. For
example, the underdetermined problem

2
i = mi - 1)+ (2x — 2.2)?),
min ) min ((x )+ (2x ))

x1+x=1 (the world's simplest ill-posed problem)

has infinitely many solutions; if we also require that the 2-norm of x, given by ||x||> =
(x2 + x3)'/2, is minimum, then there is a unique solution x; = xo = 1/2.

The stability condition is much harder to “deal with” because a violation implies
that arbitrarily small perturbations of data can produce arbitrarily large perturbations
of the solution. At least, this is true for infinite-dimensional problems; for finite-
dimensional problems the perturbation is always finite, but this is quite irrelevant if
the perturbation of the solution is, say, of the order 1012.

Again the key is to reformulate the problem such that the solution to the new
problem is less sensitive to the perturbations. We say that we stabilize or regularize
the problem, such that the solution becomes more stable and regular. As an example,
consider the least squares problem miny ||Ax — b||> with coefficient matrix and right-
hand side given by

0.16 0.10 1 0.01 0.27
A= 0.17 0.11 |, b=A(1> + | —0.03 | =1 0.25
2.02 1.29 0.02 3.33

Here, we can consider the vector (0.01, —0.03, 0.02)" a perturbation of the exact
right-hand side (0.26, 0.28, 3.31)". There is no vector x such that Ax = b, and the
least squares solution is given by

7.01
XLs = (—8.40) = “AXLS — b“g =,0.022 .

Two other “solutions” with a small residual are

X/ _ 165 X” _ O =
- 0 ' T\ 258

|Ax' = b||» = 0.031, |Ax" = b||> = 0.036.

All three “solutions” xis, x’, and x” have small residuals, yet they are far from the
exact solution (1, 1)7!

The reason for this behavior is that the matrix A is ill conditioned. When this is
the case, it is well known from matrix computations that small perturbations of the
right-hand side b can lead to large perturbations of the solution. It is also well known
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that a small residual does not imply that the perturbed solution is close to the exact

solution.
lll-conditioned problems are effectively underdetermined. For example, for the

above problem we have

—0.0030
A (‘1'22) — | o.0027
: 0.0053

showing that the vector (—1.00, 1.57)7 is “almost” a null vector for A. Hence we can
add a large amount of this vector to the solution vector without changing the residual
very much; the system behaves almost like an underdetermined system.

It turns out that we can modify the above problem such that the new solution
is more stable, i.e., less sensitive to perturbations. For example, we can enforce an
upper bound ¢ on the norm of the solution; i.e., we solve the modified problem:

min [|Ax — bl|» subject to lIx]l2 < 6.
X

The solution x5 depends in a unique but nonlinear way on 9; for example,

0.08 0.84 1.16 6.51
1= 005) 7 \os4) M3 T \o7a) MO0\ 760)"

The solution x;.37 (for § = 1.37) is quite close to the exact solution. By supplying
the correct additional information we can compute a good approximate solution. The
main difficulty is how to choose the parameter § when we have little knowledge about
the exact solution.

Whenever we solve an inverse problem on a computer, we always face difficulties
similar to the above, because the associated computational problem is ill conditioned.
The purpose of this book is:

1. To discuss the inherent instability of inverse problems, in the form of first-kind
Fredholm integral equations.

2. To explain why ill-conditioned systems of equations always arise when we dis-
cretize and solve these inverse problems.

3. To explain the fundamental “mechanisms” of this ill conditioning and how they
reflect properties of the underlying problem.

4. To explain how we can modify the computational problem in order to stabilize
the solution and make it less sensitive to errors.

5. To show how this can be done efficiently on a computer, using state-of-the-art
methods from numerical analysis.

Regularization methods are at the heart of all this, and in the rest of this book we will
develop these methods with a keen eye on the fundamental interplay between insight
and algorithms.



Chapter 2

Meet the Fredholm Integral
Equation of the First Kind

This book deals with one important class of linear inverse problems, namely, those that
take the form of Fredholm integral equations of the first kind. These problems arise
in many applications in science and technology, where they are used to describe the
relationship between the source—the "hidden data"—and the measured data. Some
examples are

e medical imaging (CT scanning, electro-cardiography, etc.),

e geophysical prospecting (search for oil, land-mines, etc.),

e image deblurring (astronomy, crime scene investigations, etc.),
e deconvolution of a measurement instrument’s response.

If you want to work with linear inverse problems arising from first-kind Fredholm
integral equations, you must make this integral equation your friend. In particular, you
must understand the “psyche” of this beast and how it can play tricks on you if you
are not careful. This chapter thus sets the stage for the remainder of the book by
briefly surveying some important theoretical aspects and tools associated with first-
kind Fredholm integral equations.

Readers unfamiliar with inner products, norms, etc. in function spaces may ask:
How do | avoid reading this chapter? The answer is: Do not avoid it completely; read
the first two sections. Readers more familiar with this kind of material are encouraged
to read the first four sections, which provide important background material for the
rest of the book.

2.1 A Model Problem from Geophysics

It is convenient to start with a simple model problem to illustrate our theory and
algorithms. We will use a simplified problem from gravity surveying. An unknown
mass distribution with density f(t) is located at depth d below the surface, from 0 to
1 on the t axis shown in Figure 2.1. We assume there is no mass outside this source,



