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Foreword

Coxeter groups arise in a multitude of ways in several areas of mathemat-
ics. They are studied in algebra, geometry, and combinatorics, and certain
aspects are of importance also in other fields of mathematics. The theory
of Coxeter groups has been exposited from algebraic and geometric points
of view in several places, also in book form. The purpose of this work is to
present its core combinatorial aspects.

By “combinatorics of Coxeter groups” we have in mind the mathematics
that has to do with reduced expressions, partial order of group elements,
enumeration, associated graphs and combinatorial cell complexes, and con-
nections with combinatorial representation theory. There are some other
topics that could also be included under this general heading (e.g., combi-
natorial properties of reflection hyperplane arrangements on the geometric
side and deeper connections with root systems and representation theory
on the algebraic side). However, with the stated aim, there is already more
than plenty of material to fill one volume, so with this “disclaimer” we limit
ourselves to the chosen core topics.

It is often the case that phenomena of Coxeter groups can be understood
in several ways, using either an algebraic, a geometric, or a combinatorial
approach. The interplay between these aspects provides the theory with
much of its richness and depth. When alternate approaches are possible,
we usually choose a combinatorial one, since it is our task to tell this side
of the story. For a more complete understanding of the subject, the reader
is urged to study also its algebraic and geometric aspects. The notes at the
end of each chapter provide references and hints for further study.



xii Foreword

The book is divided into two parts. The first part, comprising Chapters 1
— 4, gives a self-contained introduction to combinatorial Coxeter group the-
ory. We treat the combinatorics of reduced decompositions, Bruhat order,
weak order, and some aspects of root systems. The second part consists of
four independent chapters dealing with certain more advanced topics. In
Chapters 5 — 7, some external references are necessary, but we have tried
to minimize reliance on other sources. Chapter 8, which is elementary, dis-
cusses permutation representations of the most important finite and affine
Coxeter groups.

Exercises are provided to all chapters both easier exercises, meant
to test understanding of the material, and more difficult ones representing
results from the research literature. Open problems are marked with an
asterisk. Thus, the book is meant to have a dual character as both graduate
textbook (particularly Part I) and as research monograph (particularly
Part II).

Acknowledgments: Work on this book has taken place at highly irregular
intervals during the years 1993-2004. An essentially complete and final
version was ready in 1999, but publication was delayed due to unfortunate
circumstances. During the time of writing we have enjoyed the support of
the Volkswagen-Stiftung (RiP-program at Oberwolfach), of the Fondazione
San Michele, and of EC grants Nos. CHRX-CT93-0400 and HPRN-CT-
2001-00272 (Algebraic Combinatorics in Europe).

Several people have offered helpful comments and suggestions. We par-
ticularly thank Sergey Fomin and Victor Reiner, who used preliminary
versions of the book as course material at MIT and University of Min-
nesota and provided invaluable feedback. Useful suggestions have been
given also by Christos Athanasiadis, Henrik Eriksson, Axel Hultman, and
Federico Incitti. Giinter Ziegler provided much needed help with the mys-
teries of IATEX. Special thanks go to Annamaria Brenti and Siv Sandvik,
who did much of the original typing of text, and to Federico Incitti, who
helped us create many of the figures and improve some of the ones created
by us. Figure 1.1 was provided by Frank Lutz and Figure 1.3 by Jiirgen
Richter-Gebert.

Stockholm and Rome, September 2004

Anders Bjorner and Francesco Brenti



Notation

We collect here some notation that is adhered to throughout the book.

Z

N

P

QR,C

[n)]

[a, b]

2]
{a1,...,an}<
la)

fa]

sgn(a)

(5”‘ or 5(2,])
|Al, #A4,

or card(A)
AW B
AAB
924

(x)

A*

the integers

the non-negative integers

the positive integers

the rational, real, and complex numbers

the set {1,2,...,n} (n € N), in particular [0] =0
theset {n€Z: a<n<b} (a,beZ)

the set [—n,n] \ {0}

the set {ai,...,a,} with total order a; < - < a,
the largest integer < a (a € R)

the smallest integer > a (a € R)

oy 1, ifa>0,
the sign of a real number: sgn(a) = 0, ifa=0,
-1, ifa<0.

Lo def [ 1, ifi=yj,

the Kronecker delta: 6;; = { 0, EiLi

the cardinality of a set A

the union of two disjoint sets

the symmetric difference AU B\ (AN B)

the family of all subsets of a finite set A

the family of all k-element subsets of a finite set A
the set of all words with letters from an alphabet A

Each result (theorem, corollary, proposition, or lemma) is numbered con-
secutively within sections. So, for example, Theorem 2.3.3 is the third result
in the third section of Chapter 2 (i.e., in Section 2.3). The symbol O de-
notes the end of a proof or an example. A O appearing at the end of the
statement of a result signifies that the result should be obvious at that
stage of reading, or else that a reference to a proof is given.
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1
The basics

Coxeter groups are defined in a simple way by generators and relations.
A key example is the symmetric group S,,, which can be realized as per-
mutations (combinatorics), as symmetries of a regular (n — 1)-dimensional
simplex (geometry), or as the Weyl group of the type A,,_; root system or
of the general linear group (algebra). The general theory of Coxeter groups
expands and interweaves the many mathematical themes and aspects
suggested by this example.

In this chapter, we give the basic definitions, present some examples, and
derive the most elementary combinatorial facts underlying the rest of the
book. Readers who already know the fundamentals of the theory can skim
or skip this chapter.

1.1 Coxeter systems

Let S be a set. A matrix m : S x S — {1,2,...,00} is called a Cozeter
matriz if it satisfies

m(s,s") =m(s',s); (1.1)
m(s,8)=1 & s=4. (1.2)
Equivalently, m can be represented by a Cozeter graph (or Cozeter dia-

gram) whose node set is S and whose edges are the unordered pairs {s, s’}
such that m(s,s’) > 3. The edges with m(s,s’) > 4 are labeled by that
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number. For instance,

S4
1 2 3 2 0
2 1 4 2
«—
3 4 1 o0 s1 s3 4
2 2 oo 1
S2

Let S2, = {(s,s") € 5% : m(s,s’) # oco}. A Coxeter matrix m determines
a group W with the presentation

{ Generators: S

, 1.3
Relations: (ss')"(®) = e, for all (s,s') € S, (13)

Here, and in the sequel, “e” denotes the identity element of any group
under consideration. Since m(s,s) = 1, we have that

s?=e, forallseS, (1.4)
which, in turn, shows that the relation (ss’ )m(s*s') = e is equivalent to
55 58 8 =g 8888 ... (1.5)
m(s,s’) m(s,s’)

In particular, m(s, s’) = 2 (i.e., two distinct nodes s and s’ are not neighbors
in the Coxeter graph) if and only if s and s’ commute.

For instance, the group determined by the above Coxeter diagram is
generated by s1, s2, 83, and s4 subject to the relations

S%ZS%ZS%IS%Z@
5189 = S281

518381 = 8385183

51584 = 8481

82835283 — 83525352
S$284 — S5482.

If a group W has a presentation such as (1.3), then the pair (W,S5) is
called a Cozeter system. The group W is the Coxeter group and S is the
set of Cozeter generators. The cardinality of S is called the rank of (W, 5).

Most groups of interest will be of finite rank. The system is irreducible if
its Coxeter graph is connected.

When referring to an abstract group as a Coxeter group, one usually
has in mind not only W but the pair (W, S), with a specific generating set
S tacitly understood. Some caution is necessary in such cases, since the
isomorphism type of (W, .S) is not determined by the group W alone; see
Exercise 2.

The following three statements are equivalent and make explicit what it
means for W to be determined by m via the presentation (1.3):
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1. (Universality Property) If G is a group and f : S — G is a mapping
such that

(F&)f(s)me) =
for all (s,s’) € S2_, then there is a unique extension of f to a group
homomorphism f: W — G.

2. W = F/N, where F is the free group gerllerated by S and N is the
normal subgroup generated by {(ss')™(**) : (s,5') € S2_}.

3. Let S* be the free monoid generated by S (i.e., the set of words in the
alphabet S with concatenation as product). Let = be the equivalence
relation generated by allowing insertion or deletion of any word of
the form

!’
(ss)™&%) —s5's5's...5' s
—_—

2m(s,s’)
for (s,s’) € SZ,. Then, S*/ = forms a group isomorphic to W.

It might seem that to be precise we should use different symbols for the
elements of S and for their images in W 22 §*/ = under the surjection

g: S* oW (1.6)

However, this is needlessly pedantic since, in practice, the possibility of
confusion is negligible. It will be shown (Proposition 1.1.1) that s # s’ in
S implies ¢(s) # ¢(s’) in W and (Corollary 1.4.8) that S is a minimal
generating system for W.

Let (W, S) be a Coxeter system. Definition (1.3) leaves some uncertainty
about the orders of pairwise products ss’ as elements of W (5,5 € S). All
that immediately follows is that the order of ss’ divides m(s, s’) if m(s, s’)
is finite. This leaves open the possibility that distinct Coxeter graphs might
determine isomorphic Coxeter systems. However, this is not the case.

Proposition 1.1.1 Let (W, S) be the Cozeter system determined by a Cozx-
eter matriz m. Let s and s’ be distinct elements of S. Then, the following
hold:

(i) (The classes of) s and s’ are distinct in W.
(i) The order of ss' in W is m(s,s').

The proof is postponed to Section 4.1, where it is obtained for free as a
by-product of some other material. Section 4.1 makes no use of (or even
mention of) any material in the intermediate sections, so it is possible for
a systematic reader, who wants to see a proof for Proposition 1.1.1 at this
stage of reading, to go directly from here to Section 4.1.

It is a consequence of Proposition 1.1.1 that the Coxeter matrix
(m(s,s"))s,s’es can be fully reconstructed from the group W and the
generating set S. This leads to an important conclusion.
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Theorem 1.1.2 Up to isomorphism there is a one-to-one correspondence
between Cozeter matrices and Cozxeter systems. O

The finite irreducible Coxeter systems, as well as certain classes of infinite
ones, have been classified. See Appendix Al for the classification of the
finite and so-called affine groups and [306] for additional information. From
now on, we will every now and then refer to these Coxeter groups by their
conventional names mentioned in Appendix Al, but the classification as
such will not play any significant role in the book. There is no essential
restriction in confining attention to the irreducible case, since reducible
Coxeter groups decompose uniquely as a product of irreducible ones (see
Exercise 2.3).

The finite Coxeter groups for which m(s, s’) € {2,3,4,6} for all (s,s’) €
S2,s # s are called Weyl groups, a name motivated by Lie theory (see
Example 1.2.10). The Coxeter groups for which m(s,s’) € {2,3} for all
(s,8") € §%, 5 # s are called simply-laced.

1.2 Examples

Let us now look at a few examples. The following list is not intended to be
systematic — the aim is merely to acquaint the reader with some of the
groups that play an important role in the combinatorial theory of Coxeter
groups and to exemplify some of the diverse ways in which Coxeter groups
arise. More examples can be found in Chapter 8.

Example 1.2.1 The graph with n isolated vertices (no edges) is the
Coxeter graph of the group Zs X Zo X - -+ X Zo of order 2. O

Example 1.2.2 The universal Cozeter group U, of rank n is defined by
the complete graph with all (3) edges marked by “co.” Equivalently, it is
the group having n generators of order 2 and no other relations. Each group
element can be uniquely expressed as a word in the alphabet of generators,
and these words are precisely the ones where no adjacent letters are equal. O

Example 1.2.3 The path

S1 52 S3 Sn—2 Sn—1

is the Coxeter graph of the symmetric group S,, with respect to the gener-
ating system of adjacent transpositions s; = (i,i+1),1 < i < n—1. This is
proved in Proposition 1.5.4. An understanding of this particular example
is very valuable, both because of the importance of the symmetric group
as such and its role as the most accessible nontrivial example of a Cox-
eter group. We will frequently return to S, in order to concretely illustrate
various general concepts and constructions. O
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Example 1.2.4 The graph
4

So S1 S2 S3 Sn—2 Sn—1

is the Coxeter graph of the group S2 of all signed permutations of the
set [n] = {1,2,...,n}. See Section 8.1 for a detailed description of this
group. It can be thought of in terms of the following combinatorial model.
Suppose that we have a deck of n cards, such that the j-th card has “+3”
written on one side and “—;” on the other. The elements of S2 can then
be identified with the possible rearrangements of stacks of cards; that is,
a group element is a permutation of [n] = {1,2,...,n} (the order of the
cards in the stack) together with the sign information [n] — {+, —} (telling
which side of each card is up). The Coxeter generators s;, 1 <i <n — 1,
interchange the card in position ¢ with that in position ¢ + 1 in the stack
(preserving orientation), and sqg flips card 1 (the top card).
The group SP has a subgroup, denoted S, with Coxeter graph

/
50
O- T P === —0—0
S1 82 S3 S4 Sn—2 Sn—1

Here, s = sps150. In terms of the card model this group consists of the
stacks with an even number of turned-over cards (i.e., with minus side up).
The generators s;, 1 <7 <n — 1, are adjacent interchanges as before, and
so flips cards 1 and 2 together (as a package). See Section 8.2 for more
about this group. O

Example 1.2.5 The circuit

S1 S2 S3 Sn—2 Sn—1

is the Coxeter graph of the group S,, of affine permutations of the integers.
This is the group of all permutations x of the set Z such that

z(j+n)=z()+n, foralljeZ,
and
n
y n+1
> = ("),
=1
with composition as group operation. The Coxeter generators are the peri-

odic adjacent transpositions s5; = HjeZ(i +jni+1+jn)fori=1,...,n.
See Section 8.3 for more about these infinite permutation groups. O



