A
AWQ"
Rt

i

«.,.‘WN.

=4

Ar;ﬁzial

Intelligence

Techniques

in Prolog

Yoav Shoham

Morgan Kaufmann Publishers, Inc.
San Francisco, California

Sponsoring Editor: Michael B. Morgan
Production Manager: Yonie Overton
Assistant Editor: Douglas Sery
Copyeditor: Fran Taylor

Proofreader: Judy Bess

Cover Design: Studio Silicon

Printer: R.R. Donnelley & Sons

Editorial Offices:

Morgan Kaufmann Publishers, Inc.
340 Pine Street, Sixth Floor

San Francisco, CA 94104

© 1994 by Morgan Kaufmann Publishers, Inc.

All rights reserved
Printed in the United States of America

98 97 96 95 4 543 21

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means—electronic, mechanical, photocopying,
recording, or otherwise—without the prior written permission of the publisher.

Library of Congress Cataloging-in-Publication Data

Shoham, Yoav.

Artificial intelligence techniques in Prolog / Yoav Shoham.

p. cm.

Includes bibliographical references and index.

ISBN 1-55860-319-0 (cloth)
ISBN 1-55860-167-8 (paper)

1. Artificial intelligence—Data processing. 2. Prolog (Computer

program language) I. Tite
Q336.S543 1994
006.3—dc20

9242117

CIpP

To Orit and Maia

Preface

The field of artificial intelligence (Al for short) spans a bewildering array
of topics. Although usually thought of as part of computer science, Al
overlaps with disciplines as diverse as philosophy, linguistics, psychology,
electrical engineering, mechanical engineering, and neuroscience. It is also
quite young as scientific fields go. One result of this breadth and youth is
an atmosphere of creative excitement and pioneering. Indeed, given Al’s
relatively short history, the number of innovations that have emerged from
within AI, and their effects on neighboring disciplines, are striking.

Another outcome of this diversity and dynamism has been a lack of uni-
formity of research issues and scientific methodology. Although in general
this outcome has both positive and negative ramifications, its effect on Al
teaching has been largely negative; all too often the effect has been to sac-
rifice either breadth or depth of coverage. Teachers are hardly at fault here;
simply too much happens under the umbrella called Al for teachers to ad-
equately cover it all in a one-semester (let alone one-quarter) course. Thus
some courses emphasize the cognitive-science component of Al, some con-
centrate on knowledge representation, some on knowledge-based systems,
some on reasoning techniques, and so on. By necessity, the broader the ma-
terial covered in an introductory course, the shallower the coverage. The
best balance for an introductory AT course is still a topic for debate.

This book is not a broad introduction to Al; the book’s primary aim is to
provide a crisp introduction to the well-established algorithmic techniques
in the field. As a result, it is not particularly gentle, but instead plunges
rather directly into the details of each technique. Most importantly, the
book gives short shrift to conceptual issues, mentioning them briefly only by
way of positioning the material within the AI landscape. Questions such as

xiii

X1V Preface

“What is the nature of intelligence?”; “What does the Turing Test actually
measure?”; and “Is symbol manipulation the best framework within which
to model natural intelligence or to create an artificial one?” will remain
fascinating and outside the scope of this book.

The techniques included in the book cover general areas such as search,
rule-based systems, truth maintenance, constraint satisfaction, and uncer-
tainty management, and specific application domains such as temporal rea-
soning, machine learning, and natural language. These areas are sufficiently
diverse that I have had to omit much material. I hope that the following is
nonetheless true of the selection:

e The material is self-contained in two ways. First, I include coverage
of basic techniques, even those with which many readers are likely to
be familiar (this is true especially of the search chapter). Second, I
include (brief) summaries of required background material.

e The techniques discussed are completely demystified. Although I de-
liberately try to keep the presentation informal, the techniques are
explained clearly; sufficient details are supplied to remove ambiguity,
and details that are not essential to understanding the techniques are
omitted. When desirable and possible, I present the techniques in
stages, adding functionality or improving efficiency incrementally.

e The material is up-to-date and balanced. Since the material includes
basic techniques as well as some more advanced ones, and, since the
areas covered are quite diverse, the coverage of all areas is necessarily
partial. Nonetheless, the most influential recent techniques in each
area are included.

References for further reading, whether to achieve deeper theoretical under-
standing or to further explore the techniques discussed, are mentioned at
the end of each chapter and appear in the bibliography at the end of the
book. In addition, many of the exercises at the end of each chapter have
been designed to explore issues which are not treated in the text.

Some readers might wonder why I insist on presenting programs, rather
than simply explaining the algorithms in language-neutral terms. Indeed,
in many places the programs are preceded by high-level pseudo code. How-
ever, it is not without reason that Al practitioners have developed a healthy
skepticism of unimplemented ideas. Many of the techniques we will discuss

Preface XV

are quite intricate and messy, and, in the past, many reasonable-looking
procedures turned out, upon being put to use, to have swept under the rug
some of the most important details. Interpreters and compilers help keep
one honest; if nothing else, our programs will expose the limitations of the
procedures they implement.

In selecting Prolog as the implementation language, I also hope to dispel
some misconceptions about the language. Prolog is a fun language, and
students take a quick liking to it. This makes it a good choice for pedagogical
reasons. For historical reasons, there are those in Al, especially in the United
States, who have claimed that Prolog is unsuited for implementation of all
but a narrow slice of AT techniques. As we shall see, this claim is quite false.

Prolog grew out of research in logic, and is the best-known representative
of logic programming languages. I will nevertheless say little about logic in
this book. This is particularly ironic, as much of my own research has been
concerned with the application of logic in Al. However, perhaps precisely
for this reason, I have too much respect for both Prolog and logic to be glib
about the complex relationship between them. In this book I use Prolog as
a flexible, efficient, and, yes, procedural language. Furthermore, in various
places in the book, efficiency and purity were sacrificed for the sake of clarity.
I believe that the utility and beauty of Prolog show nonetheless.

I have not included an introduction to Prolog. Excellent textbooks,
such as Clocksin and Mellish’s Programming in Prolog [7] and Sterling and
Shapiro’s The Art of Prolog [77], already exist for this purpose. A rough
criterion for the requisite Prolog knowledge is familiarity with the material
in Clocksin and Mellish’s book. Chapter 1 elaborates on the required Prolog
knowledge and introduces additional Prolog material that will be used in the
book.

This book grew out of the course notes for a class I have been teach-
ing at Stanford University, titled “Al techniques in Prolog.” I have always
started the class with a crash course in Prolog; I have found six 75-minute
lectures quite adequate, although students are offered an additional labo-
ratory section as an option. The balance of the course covers material in
this book. No single course is likely to cover the entire corpus included
here; the topics chosen will depend on the background and interests of the
audience. I have tended to divide the time roughly as follows: search (2 lec-
tures), meta-interpreters (1-2), forward chaining and production systems (1
2), truth maintenance (2), uncertainty (1), planning and temporal reason-
ing (2), learning (2), and natural language (1). This selection is appropriate

xvi Acknowledgements

for students who have had one course in Al or for those who have had none
but are willing to compensate by studying on their own. If less is assumed
on the part of the students, some of the advanced material must be omit-
ted. Conversely, students with more experience may need to spend less time
on some of the earlier chapters, for example those on search and forward
chaining.

Acknowledgements

This book has been written over about four years, long enough a period to
benefit from the feedback of a large number of people. I know that after the
book is published it will dawn on me that I neglected to acknowledge the
invaluable help of some dear friend; I apologize in advance.

Four research assistants helped tremendously. First and foremost, I
thank Dominique Snyers. Dominique helped design the book outline, re-
searched the strengths and weaknesses of existing books covering related
material, and helped write some of the code. In particular, the natural
language chapter would not have been written without Dominique.

The subsequent research assistants were (in chronological order) Anu-
chit Anuchitanukul, Avrami Tzur, and Robert Kennedy. They each pro-
vided crucial help in designing new algorithms or improving existing ones,
implementing them, and debugging. For example, Anuchit came up with
the meta-interpreter to handle ‘cut,” Avrami wrote the first known imple-
mentation of Nilsson’s RSTRIPS in the western world, and Robert simpli-
fied Allen’s temporal constraint-satisfaction procedure. They each did much
more, and have my deepest admiration and gratitude.

The following colleagues were very generous with their time, either filling
in gaps in my knowledge or commenting on early drafts, or both: Eugene
Charniak, Keith Clark, Tom Dean, Rina Dechter, Mark Drummond, Markus
Fromherz, Herve Gallaire, Robert Goldman, Maria Gini, Steve Hanks, Pentii
Hietala, Pekka Ketola, Apostolos Lerios, Jalal Maleki, David McAllester,
Judea Pearl, and Udi Shapiro.

I'd be remiss if I did not single out Richard O’Keefe for special thanks.
Richard has sent me what must amount to fifty pages of comments on ear-
lier drafts. Most of his pointed suggestions were too good to ignore, and the
result is a better if later book. Chapters 1-3 particularly benefitted from

Acknowledgements xvil

Richard’s comments. For example, in Chapter 1 some of the utility predi-
cates (such as call/n) were supplied directly by Richard, and in Chapter 2
the minimax implementation is based on his suggestion.

I am indebted to a number of colleagues at Stanford. The Robotics
Laboratory, where I have worked for the past five years, is a stimulating
environment. In particular, this book has benefitted from continuous inter-
action with Jean-Claude Latombe and Nils Nilsson.

I have a lot for which to thank Mike Morgan from Morgan Kaufmann,
who was engaged in this project from an early stage; his intelligent advice
has been invaluable, and his informal style a real pleasure. I also thank
Yonie Overton for a very friendly and astute production management.

Members of my research group, knowbotics, have been my primary source
of intellectual challenge and satisfaction. Over the past few years they have
included Ronen Brafman, Sylvie Cazalens, Kave Eshghi, Nita Goyal, Ronny
Kohavi, James Kittock, Phillipe Lamarre, Fangzhen Lin, Eyal Mozes, An-
drea Schaerf, Anton Schwartz, Grisha Schwarz, Moshe Tennenholtz, Becky
Thomas, Mark Torrance, and Alvaro del Val; thank you all.

xviii Software Availability

Software Availability

This book contains a substantial amount of Prolog code. The software is
obtainable in one of the following ways:

e It may be retrieved through anonymous FTP.

e It may be ordered from the publisher.

The first service is free of charge; the second entails a charge to cover the
publisher’s costs. The sections below provide additional details about each
option.

I regret that neither I nor the publisher will be able to provide soft-
ware support, whether with regard to installing the software or to running
it. However, I do welcome comments on the code and suggestions for im-
provements. Such comments should be sent only through electronic mail,
addressed to aitp@cs.stanford.edu.

A word about quality control. All the code has been debugged and tested,
but not at the level of commercial software. Accordingly, while every attempt
has been made to provide correct code, no warranty is implied. Similarly,
I have tried to make sure that the software being distributed matches the
code given in the book, but some discrepancies are inevitable.

Using anonymous FTP

The File Transfer Protocol (FTP) is a standard protocol for transferring
files over the Internet. In order to use it, you must be logged into a computer
that is hooked into the net. If you do not have access to the net, then this
method will be of no use to you. If you do have access to the Internet but
have never used FTP, get help from someone who has.

The code is available for anonymous FTP from the computer unix.sri.com.
[t resides in the directory pub/shoham; the file README in that directory ex-
plains more about the various other files, and gives advice on what to copy.

A sample FTP session initiated by a user named smith at the Internet
site dept.univ.edu might look as follows (user input in slanted font):
% ftp unix.sri.com (or ftp 128.18.10.3)
Name (unix.sri.com:smith): anonymous
331 Guest login ok, send indent as password

Software Availability Xix

Password: dept.univ.edu
230 Guest login ok, access restrictions apply
ftp> cd pub/shoham
250 CWD command successful.
ftp> Is
(1ist of files)
ftp> prompt
Interactive mode off
ftp> mget™

ftp> bye
[/

Anonymous FTP is a privilege, not a right. The site administrators at
unix.sri.com have made the system available out of the spirit of sharing,
but there are real costs associated with network connections, storage, and
processing, all of which are needed to make this sharing possible. To avoid
overloading the system, do not FTP between 7:00 a.m. and 6:00 p.m. local
(pacific) time. If you are using this book for a class, do not FTP the code
yourself; have the professor FTP it once and distribute code to the class. In
general, use common sense and be considerate: none of us want to see sites
close down because a few are abusing their privileges.

Ordering from the publisher

If you do not have access to the Internet, you may obtain the code for
a modest fee from the publisher. You may contact the publisher either by
mail or by phone:

Morgan Kaufmann Publishers, Inc.
340 Pine Street, Sixth Floor

San Francisco, CA 94104
415.392.2665

800.745.7323

When you do so, specify which of the following formats you desire:

Macintosh diskette
DOS 5.25 diskette
DOS 3.5 diskette
Unix TAR tape

Contents

Preface xiii
Acknowledgements Xvi
Software Availability xviii

1 On Prolog 1
11 Acheeklisf .+ 568 s scwnsnswmsniamnsioissa 2
1.2 Additional Prolog material 3
1.2.1 Standard lists and ‘and’ lists 3

1.2.2 ‘All-solutions’ predicates 3

123 Indexing 4

1.2.4 Last-call optimization 5

1.2.5 Difference lists and ‘holes” 6

1.2.6 Static and dynamic predicates 7

1.2.7 Bitwise operations 8

1.2.8 Database references 8

1.3 Utility predicates i 9

2 Search 13
2.1 Review of basic graph-theoretic terminology 14
2.2 Representing graphs in Prolog 17
2.2.1 Representing graphs 17

2.2.2 Representing trees 20

vii

viii

Contents

2.2.3 Representing and-or trees
2.3 Review of graph search techniques
24 Depth-firstmearch . . o ¢+ s 5 v 6 v s c vw s s w7 s 555 0 s
2.5 DBreadth-first search ¢ o ow s 30205 smswa
2.6 Iterative deepening Lo
2.7 Best-firstsearch oo oo
2.7.1 The general best-first algorithm
272 The A*algorithm o v oo s o v w0 w6 s s &
2.8 Game-treesearch o o

2.8.1 Minimax searcho L.
289 owfsearch. sv o5 5 0 s 5 5w s m s m s B s G s w s
2.9 Furtherreading

2.10 Exerciseso e e e e e e e

Backward-Chaining Methods

3.1 The basic meta-interpreter

3.2 A full standard meta-interpreter
3.3 A modified depth-first meta-interpreter
3.4 Toward an expert-system shell
3.4.1 An explanatory meta-interpreter
3.4.2 An interpreter with a query mechanism

3.5 Partial evaluation
3.6 A breadth-first meta-interpreter
3.7 A best-first meta-interpreter L. L.
3.8 Furtherreading

3.9 Exercises e e e

Other Rule-Based Methods

4.1 Forward chaining
4.1.1 Representing positive forward-chaining rules
4.1.2 Forward chaining with positive rules, unoptimized

4.1.3 Optimizing the implementation

Contents

4.2

4.1.4 Representing general forward-chaining rules
4.1.5 Forward chaining with negative conditions
4.1.6 Termination conditions for forward chaining
4.1.7 Variables in forward-chaining rules
Production systems
4.2.1 The general structure of a production system
4.2.2 Implementing a generic production system
4.2.3 Determining the conflict set
4.2.4 Resolving the conflict set
4.2.5 Firing a production rule

4.3 Furtherreading

4.4 EXerciSes v v v v e e e e e e e e e e e e e e e

5 Truth Maintenance Systems

5.1 Reason maintenance
5.1.1 Justifications and premises
5.1.2 Operationson RMSs
5.1.3 An inefficient Prolog implementation
5.1.4 Optimizing the implementation

5.2 Consistency maintenance

5.3 Assumption-based truth maintenance.
5.3.1 The structure of an ATMS
5.3.2 Operationsonan ATMS
5.3.3 An implementation of an ATMS

5.4 Furtherreading

DD BXOTCISEE . 4 v 5 s m w s s 8 s 5 4 @ s G0 8 B E TR & ¢ BE B

6 Constraint Satisfaction

6.1 Precise definition of CSP

6.2 Overview of constraint satisfaction techniques

6.3 Consistency enforcing

6.4 Consistency enforcing in temporal reasoning

80
82
84
85
89
89
91
93
95
96
97
98

101
102
102
103
107
113
120
125
127
129
130
139
140

Contents

6.5 Furtherreading 161
6.6 Exercises 162
Reasoning with Uncertainty 165
7.1 Representing uncertainty in the database 166
7.2 A general meta-interpreter with uncertainty 167
7.3 Informal heuristics o ¢ v ¢ v i v v i o v v v b e 172
7.4 Certainty factorsin MYCIN 176
7.5 A review of probability theory 178
7.6 Bayesianmetworks, 180
7.7 Furtherreading oL 196
T8 EXErcifes .« : v s o5 w0 s 5 6 5.0 608 s 60 8§ 5% 95 &6 5 197
Planning and Temporal Reasoning 199
8.1 Basicnotions 200
8.1.1 Plan and action libraries 200
8.1.2 Theblocksworld 201
8.1.3 Planning problems 201
8.2 Linear planning L L o 202
82.1 STRIPS e 203
8.2.2 Goal protection and goal regression 207
8.3 Nonlinear planning L. 225
8.4 Time map management 234
8.4.1 The basic time map manager 236
8.4.2 Abductive queries 239
8.4.3 Causal timemaps 245
B.5 Purthef readifif . + « o v v « o v 56 6 s 55 55 56 65 § 5 ¢ @ 253
8.6 Exercises e e e 254
Machine Learning 257
9.1 Inductive inference 258
9.1.1 Concept hierarchies 258

9.1.2 Prolog representation of concept hierarchies 263

Contents xi
9.1.3 Inductive inference algorithms 264

9.2 Induction of decision trees (ID3) 276
9.3 Explanation-based learning 285
9.3.1 Generalizing correct reasoning 285

9.3.2 Learning from failed reasoning 287

04 TPutther Teadifg : « o « o 5 o 5 5 ¢ wim % s B 1 8 8 v m s s o ¢ 290
9.5 EXerciseso e e e e 292
10 Natural Language 295
101 Syntax o o o e e e e e e e e e e e 296
10.1.1 Context-free grammars. 296

10.1.2 Definite Clause Grammars (DCGs) 298

10.1.3 Parsetrees i e 302

10.1.4 Syntactic extensions 303

10.2 Semantics L. 308
10.2.1 Semantic representation 309

10.2.2 Compositionality principle 311

10.2.3 Quantification L. L. 312

10.2.4 Tensed verbs 313

10.3 Further reading 315

Chapter 1

On Prolog

As explained in the preface, this book includes little material on Prolog itself.
The present chapter is an exception; its purpose is threefold:

e to explain the required Prolog background;
¢ to provide a little additional Prolog material; and

e to define a small library of routine predicates that will be used later in
the book.

There exist good introductory Prolog texts, including Clocksin and Mel-
lish’s tried-and-true Programming in Prolog [7], and Sterling and Shapiro’s
more advanced The Art of Prolog [77]. Among the truly advanced texts,
O’Keefe’s The Craft of Prolog [61] stands out. The material in this book pre-
supposes a working knowledge of standard ‘Edinburgh’ Prolog. A rough cri-
terion of the required background is familiarity with the material in Clocksin
and Mellish’s book. To further help the reader gauge his/her! preparedness,
the next section provides a checklist of concepts and built-in predicates that
the reader is expected to know.

The section following that introduces some additional Prolog material
that a reader might have missed in previous exposure to Prolog. Some of
the material, such as that on lists and all-solutions predicates, is likely to

'From here on I will use the generic masculine form, intending no bias.

1

