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PREFACE

NONLIN 2, - The second Latin American Workshop on Nonlinear
Phenomena — was held in Santiago from 6 to 14 September 1990.
Several physicists from the region and from the first world met
during eight days to discuss aspects on nonlinear phenomena in
physics. During the morning sessions series of outstanding review
lectures were given by leading physicists in the field. In the after-
noon these were followed by a great number of research reports and
we believe that the combined publication of the lecture notes and a
selection of research reports will make this volume a valuable tool
for future work on the topics.

It is not common to have a Latin American physics meeting with so
many relevant physicists from both the first world and the southern
region, and not very often that the best Latin American physicists
get together. The active presence of participants from Argentina,
Brazil, Chile, France, Italy, Mexico, the United States of America,
Uruguay and Venezuela was crucial to make the meeting such a
success. Most sessions were followed by vivid discussions. We are
convinced that meetings with these characteristics are essential for
the further development of scientific activity in third world countries.

The Workshop focused its attention on a few aspects of nonlinear
phenomena, as they appear in fluids, solids, cellular automata,
neural networks and other complex and/or disordered systems. For
the readers convenience the material has been divided into four
chapters, but this division should not be taken too strictly. Many
papers combine different aspects of nonlinear phenomena, or refer to
a variety of applications.

The invited lecturers were: P. Bak, R.B. Griffiths, P.C. Hohenberg,
L.P. Kadanoff, A.J. Libchaber, J.L. Mordn-Lépez and M.A. Virasoro.
Our attempt to publish the lecture notes of all of them has not been
completely successful.

NONLIN 2 was generously sponsored by: Fundacién Andes (Chile),
National Science Foundation (United States), Universidad de Chile,
Centro Latinoamericano de Fisica (CLAF), UNESCO (regional office),



vi Preface

Comisién Nacional de Investigacién Cientifica y Tecnolégica (Chile),
Sociedad Chilena de Fisica, Universidad de Santiago.

The organizers are very much indebted to the following persons
whose assistance was essential in one or more aspects of the
organization of the conference: Jacobo Rapaport, Igor Saavedra,
Nelson Zamorano, Naum Joel, Francisco Brieva, and also to the
students Dino Risso and Marianne Takamiya. We are also grateful
to Carmen Belmar and Maltilde Gélvez.

The Editors
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THERMAL TURBULENCE

A. LIBCHABER, E. MOSES, X.Z. WU, and G. ZOCCHI

University of Chicago, Physics Department and The Research Institutes
5640 So. Ellis Avenue, Chicago, IL 60637 USA

1. INTRODUCTION

In his referred paper on the problem of turbulence [1] Landau wrote "Although
the turbulent motion has been extensively studied from different points of view, the
very essence of the phenomenon is still lacking clearness. The problem may appear
in a new light if the prdcess of initiation of turbuience is examined thoroughly." As
experimentalists, we undertook a program to study the unsteadiness of the laminar
motion, starting from the onset of free convection.

Foliowing Threlfall [2], we used helium gas at low temperature as the fluid, for
two main reasons. First a large span of Rayleigh numbers can be obtained by
changing the gas density, going up to the liquid-gas critical point. Second, at
helium temperatures, the kinematic viscosity can reach very small values, of the
order h/m. [3]. Thus, large Rayleigh (Ra) and Reynolds (Re) numbers can be
reached in a closed system of reasonable size, with solid thermal stability and well
defined boundary conditions. Precisely, in our last cell size, 40 cm height, we can
get close to Ra = 1016 and Re of the order of 108. Not able to visualize the flow in He
gas we concentrate on statistical measurements, heat flux, histograms of

temperature fluctuations, large scale velocity, power spectra.

An optical study of the turbulent flow was also developed by Zocchi et al {4]. In
essence, we have shown that a possible way to attack the problem is to concentrate
on the dynamics of the coherent structures in the flow: how they are formed, how
they propagate, and what they carry. the situation is not too complicated because
apparently there aren't too many different structures in the cell; here we
distinguish three kinds: heat carrying plumes, vorticity carrying swirls, and waves
propagating along the boundary layers. We give a qualitative description of the
interplay between these objects in the "life cycle” of the cell, and we show that there
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are regions in the flow where the coherent structures are dominant and regions
where they cannot penetrate.

2. THE MATHEMATICAL PROBLEM

Let us consider the following physical system: a fluid is contained in a closed
box, which we take, for definiteness, to be a cube (this is the geometry of the present
experiment). The sides of the box are thermally insulated from the outside
environment (for example by means of a vacuum jacket); the top is maintained at a
constant, uniform temperature (let's call it 0), and the bottom at a higher
temperature A. The box is in a uniform gravitational field.

This is a non equilibrium system: there is a temperature difference between the
bottom and top, and correspondingly a heat flux through the system. To state the
problem in a simple mathematical form we consider the equations for the velocity
and temperature fields of the fluid in the Boussinesq approximation, which consists
in neglecting the variations of the fluid’s properties with temperature everywhere
except in the buoyancy term (this effect has obviously to be retained since it provides
the forcing in the momentum equation). The equations of motion (which express the
conservation of momentum, energy and mass) then read:

2 "~
@ +uViu=- —l—Vp +vV u+gabz

P
g
@ +uv)e=xV 0 1)
Vu=0

Here u(x,t) , p(x,t) , 6(x,t) are the velocity, pressure and temperature fields, p is
the density, v the kinematic viscosity, o the expansion coefficient and x the thermal
diffusivity of the fluid, and g is the acceleration of gravity. z is the unit vector in the
upward direction. The forcing term g o 8 z -is well defined when one specifies the
boundary conditions for the temperature (only temperature differences matter, not
the absolute temperature).

The boundary conditions are that the velocity is zero everywhere at the walls of
the box, while the temperature is zero at the top, A at the bottom, and the normal
derivative of the temperature is zero at the sidewalls (since there is no heat flux out
of the sidewalls). If we choose a Cartesian coordinate system parallel to the sides of
the box, with the origin at the center of the box and the z-axis pointing upwards, and
calling L the length of the side of our cubic box, these boundary conditions are:
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a=0 , 60=0 at z=L72 , -12<sxy<L/2-
u=0 , 0=A at z=-L/2 , -LR2<xy<L/2
2)
a=0 , &0=0at x=tL/2, -L2<syz<L/2
u=0 , Jy0=0at y=+L/2 , -L)2<xz<L/2

To specify the problem completely we also need an initial condition, but we will
not worry about this here. We note again that the equations (1) are only
approximate: apart from the “Boussinesq approximation”, other effects have been
neglected; for example, the heat equation should contain a term describing the
generation of heat from viscous dissipation, etc.

As always in fluid mechanics, in order to understand what the control
parameters really are one puts the equations and boundary conditions in
dimensionless form. To do that we take L, L2/x and A as the units of length, time,
and temperature respectively. The choices of L. and A are obliged in order to put
the boundary conditions (2) in non-dimensional form, whereas the choice of L2/x as
the time scale contains an arbitrariness of a power of the Prandtl number ¢ =v/x ,
in other words (L2/x) oY (for any y) would be an equally suitable choice. This
arbitrariness with respect to the Prandtl number is present, as we will see in
chapter V , in all simple scaling arguments on convection.

Transforming the equations (1) (i.e. with the change of variables x - x/L , t —»
t/(L2/x) , u— (L/x)u , © > &A and p/p — (L2/x2) p/p ) and giving to the new
variables the same name as the old ones one finds:

2 -~
@+ uVu=-1Vp+ 0V u+oRabz
p

2
@ +uv)e= Vo @

Vu=0

where o = v/ix is the Prandtl number and Ra=2 is the Rayleigh

vk
number.The boundary conditions become 6=0 at z=1/2 , 6=1 at z=-1/2 , etc.
So the problem, in this formulation, depends only on two parameters, Ra and & .
There is one known solution of these equations and boundary conditions, and it is
the purely diffusive one, that is the velocity field is zero and the temperature profile
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is linear with height. This solution is stable for Ra < R, , and unstable for Ra > R, ,
where R, is a critical Rayleigh number independent of ¢ , which can be
determined theoretically by a linear stability analysis [5] , or experimentally by
measuring the heat flux , and is found to be about 2000. For Ra > R convection
starts, and the flow becomes more and more complex as the Rayleigh number is
increased, going from a time independent to a simple periodic, then chaotic, and
finally turbulent behaviour. The range of Rayleigh numbers of the present
experiment ( ~ 107 - 109 ) is well past the chaotic regime, and the flow is turbulent.

Let us now look at the dimensional arguments made above a little differently,
because it is thus possible, just by stating the problem and without even starting to
solve it, to appreciate what the questions and difficulties are. In most experiments
(including the present one) the imposed boundary conditions are actually different
from (2) , in that the heat flux through the system is held constant, and not the
temperature drop A . That is, one usually heats the bottom plate with a constant
power P, and regulates the temperature of the top plate at a given value (let’s call it
0). So instead of the boundary condition 6=A at z =-L/2 we now have szcpx d,0 =
P at z=-L/2 ; cp is the specific heat, s0 pcyx is the thermal conductivity, pcpx 9,0
is the heat flux at the plate, and L2 is the area of the plate. To put this new problem
in dimensionless form we again take L and L2/x as the units of length and time,
but looking at the new boundary condition it is clear that we have now to take
P/(pcpxis) as the unit of temperature. The resulting equations are exactly the same
as (3) , only with the number L = (gaPL2)/(pcyx2v) instead of the Rayleigh number.
The boundary conditions are also all the same except that instead of 6=1 at z=-1/2
we now have 9,9=1 at z =-1/2, in other words we go from "Dirichlet” boundary
conditions to "Neumann"” boundary conditions at the lower plate.

We would now like to venture some speculations regarding this state of affairs. If
we do an experiment imposing the heat flux, we nonetheless expect the lower plate
to finally settie down at some temperature, i.e. the system will choose a particular
temperature drop A . This is observed experimentally: there is a one to one relation
between the Rayleigh number and the heat flux. From a mathematical point of view
though, if the system is determined with the condition 9,6 =1 at the plate, we expect
it to be overdetermined (i.e. a solution may not exist) with the extra condition 0 =
seme number, uniformly valid on the plate. We know of course what the solution of
the puzzle is: the system respects the condition 8 = const. not instantaneously and
glohally on the plate, but only on average. That is, there are fluctuations.
Conversely, if one imposes the temperature drop A then there will be fluctuations of
the heat flux, and the condition 020 )z=.,» = some number will hold onl y on average.
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3. SCALING

Let us pick up again the problem of convection in our box, as defined by the
equations and boundary conditions (1) and (2) of chapter II. First, we want to
estimate the size 8 6f the boundary layer. As always, we start with dimensional
analysis. As we saw in chapter 1l , there is a priori only one lengthscale in the
problem, L , and the control parameters are Ra and o . Thus the boundary layer
size must have the form :

d ~ L {Ra,0) ' 4)

where f is an unknown function {we suppose here to be in a regime with no
hysteresis or dependence on initial conditions, so that f is an honest single - valued
function). This is just dimensional analysis, and it contains no hypothesis other
than saying that the equations (1) and (2) correctly describe the physical system.
The scaling assumption consists in assigning a particular form to the function f ;
since Ra is for us always very large, it is natural to write the Rayleigh number
dependence as a power law (the rationale being that we are writing, for the quantity
considered, the first term of an expansion in the small parameter 1/Ra ) ; the
Prandtl number is for us however of order unity, so we leave this dependence

indicated by an unknown function g :

3 - L Ra% glo) (5)

Experimentally it has been shown [2], [3] that quantities like the Nusselt number
Nu (and hence 8 , which is related to it) have a simple power law behaviour over a
large range of Ra , so the assumption (5) is justified. For the rest of the chapter we
will ignore the Prandtl number dependence, since experimental data on this aspect
are scarce (in our turbulent regime), and not much can be done theoretically by
simple scaling. The origin of the difficulty, as pointed out in chapter II , is that with
two transport coefficients , v and x , one can form an infinite number of different
time scales, differing by powers of ¢ , so in any formula involving time scales there
is, as far as scaling is concerned, an indeterminacy of a power of ¢ . Thus we set, in
(5), o=1:

3 ~ L Ra“ (6)



