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Foreword

From my personal perspective, it is fundamentally interesting to consider physical phenomena
which occur quantum mechanically, but not classically, or the reverse, occur classically, but not
quantum mechanically. Tunneling falls squarely into this scheme and as such is quite a fascinating
topic. Although tunneling was recognized a long, long time ago and was worked on extensively in
many physical contexts, it has nevertheless gone through a revolution of sorts beginning in the very
early 1980s during which it went from merely being fascinating to being way more fascinating,
as I might be tempted to put it crudely. I would identify two advances at the heart of this revo-
lution. The first is the conceptual introduction of dynamical tunneling by Davis and Heller. This
generalization of barrier tunneling to tunneling through a separatrix allows for a unified picture of,
say, what is happening in a rapidly rotating quantum pendulum tunneling between clockwise and
counterclockwise motions, a problem without a clearly identifiable potential barrier, and a particle
tunneling back and forth in a double well, a problem with a clearly identifiable potential barrier. The
dynamics of either possesses a separatrix from a classical phase-space perspective. Generalizing a
bit further from there, Ozorio de Almeida’s treatment of tunneling induced by a classical resonance
followed not long thereafter.

Davis and Heller were concerned with tunneling problems that necessarily require a multi-
degree-of-freedom perspective. This is in fact what I call the second advance, that is, not shying
away from such problems. Later in the 1980s, Wilkinson initiated analytical work on such systems
and we began our studies on chaos-assisted tunneling (Lin and Ballentine were also seeing the same
effects). Prior to this point, a number of multi-degree-of-freedom problems were properly solved
via mapping back to a barrier problem in an effective single collective degree of freedom. Think of
fission. However, once one begins to consider tunneling problems of an inescapable, multi-degree-
of-freedom nature, then all the complex features of classical dynamics, regular and chaotic motion,
homoclinic tangles, periodic orbits, diffusion, and so on, may rear their heads in a variety of ways,
and as many of us have found over the years, they all seem to in some context or another. It is
this realization which, in my view, greatly enriches the subject, and I have no sympathy for the
notion that these “complexities” represent unfortunate complications. It also leads to an openness
to consider new experimental problems, which may be found with ultracold atoms and optical lat-
tices. Instead of avoiding multidimensional arrangements, there is a motivation for creating them or
seeking them out.

Back in 1997, the National Institute for Nuclear Theory held an international program organized
by Bohigas, Leggett, and Tomsovic entitled “Tunneling in Complex Systems” where a significant
community interested in tunneling problems came together and discussed such topics as dynamical
tunneling, chaos-assisted tunneling and ionization, chaotic tunneling, multidimensional complex
trajectories, and possible or even speculative connections to various experiments involving mag-
netic systems or the decay of superdeformed nuclei. My feeling in hindsight is that it was clear that
there was still an enormous amount we did not understand about dynamical tunneling problems at
that time. Perhaps going a bit further, it was not at all obvious whether some of the known unsolved
problems would be solved anytime soon either. Many appeared on their face to be rather intractable.
In terms of an analytical theory, understanding chaos-assisted tunneling is yet to begin. My recol-
lection is that this was also before most, if not all, of the beautiful work done with ultracold atoms
and optical lattices.

Nevertheless, I guess it should not come as an enormous surprise that a great deal of progress has
been made since then, but a pleasant surprise it has been. New ideas, new contexts, new theories,
new experiments, they are all there. Personally, and among other things not being mentioned in a

vii



viii Foreword

short foreword, I have been impressed with the work on resonance-assisted tunneling beginning
with Ullmo’s group and tunneling between regular and chaotic states from Ketzmerick’s group,
all of which are required for a complete theory of chaos-assisted tunneling. The experiments from
Phillips’ and Raizen’s groups impress as well, though the effective size of % in those works muddies
the interpretations. A book is most certainly called for and this one fits the bill; one where there is an
overview and a consolidation of presentation of the current state of dynamical tunneling. Anyone
generally interested in tunneling really should be familiar with the works presented here. I look
forward to seeing this book in print.

Steven Tomsovic
Indian Institute of Technology Madras



Preface

Tunneling has remained a special phenomenon, a quintessential quantum effect, starting with the
early days of quantum theory. Nearly a century’s worth of theoretical and experimental studies have
highlighted the crucial role of tunneling in various physical phenomena. The far-reaching implica-
tions of tunneling are evident in diverse fields including nuclear, atomic, molecular physics, and,
more recently, in the area of mesoscopic science. Despite the obvious relevance of this topic to a
wide range of disciplines, an interdisciplinary scientific community devoted to tunneling has not yet
developed to a satisfactory degree. One may attribute this, at first glance, to the apparent simplicity
of a generic tunneling process, which basically involves “only” a quantum particle that crosses a
classical barrier due to the evanescent components of its wave function. The quantitative descrip-
tion of this seemingly simple process, however, can become rather intricate and rich if more than
one particle and/or more than one spatial dimension are effectively involved. This is especially the
case for “dynamical tunneling,” which essentially denotes classically forbidden transitions through
dynamical rather than energetic barriers, that is barriers that are formed by constraints of the under-
lying classical dynamics related to exact or approximate constants of motion. This book is devoted
to the study of dynamical tunneling—mechanisms and consequences.

Apart from providing a resource for the state of the art along various research lines related to
dynamical tunneling, the present book is also an attempt to establish and connect the “tunneling
community” across the borders of the various fields and disciplines in physics. Previous steps in
this direction include, among others, the book Tunneling in Complex Systems edited by Steven
Tomsovic (World Scientific, 1998), as well as several international workshops, such as the “Interna-
tional Symposium of Complexified Dynamics, Tunneling and Chaos” (Kusatsu, Japan, 2005) and,
most recently, the conference and summer school “Tunneling and Scattering in Complex Systems—
From Single to Many Particle Physics” (Dresden, Germany, 2009). Incidentally, the selection of
specific topics and contributors for this book coincides to a large extent with the spectrum of talks
and lectures at this latter event in Dresden—although this book was not intended to serve as a pro-
ceeding of the Dresden conference. We were certainly not able to cover the entire breadth of the
subject of dynamical tunneling in this book, but had to make a selection for the sake of coherence:
semiclassical aspects of dynamical tunneling as well as tunneling with cold atoms and molecular
manifestations are therefore more strongly represented than, for instance, nonclassical processes in
electronic mesoscopic physics.

As always, this book would not have been possible without the support of a number of colleagues
whom we would like to thank. Specifically, we are indebted to our contact persons at Taylor &
Francis CRC, Lance Wobus and David Fausel, for their initiatives, encouragement, patience, and
assistance in details concerning the formalities of the publication process. Thanks are also due to
Shashi Kumar from Glyph International for his valuable technical help concerning the assembly of
the individual chapters. P.S. would, further, like to take this opportunity and thank his co-organizers
of the Dresden workshop, Arnd Backer and Markus Oberthaler, as well as the Max-Planck Institute
for the Physics of Complex Systems for hosting and financing the workshop. He would also like
to acknowledge support from the DFG Forschergruppe 760 “Scattering Systems with Complex
Dynamics” which provided a unique framework for interdisciplinary research on complex dynamics
in open systems in general and on dynamical tunneling in particular during the last three years. The
success of the Forschergruppe is evident from at least two of the contributions (Chapters 6 and 8)
that are a part of this volume.

Last but not least, we have to mention our contributors, the authors of the chapters of this book,
who agreed to provide review articles on aspects of their specific research on dynamical tunneling.
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Their willingness to participate in the cross-refereeing process of the book as well as constant words
of encouragement has made our task easy. It has been a unique and wonderful experience for us. We
thank them for their contributions and hope that this book will serve as a useful resource on various
aspects of dynamical tunneling.

Srihari Keshavamurthy
Peter Schlagheck
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This chapter represents a personal perspective on dynamical tunneling. It does not attempt to review
all the significant recent developments in the subject, many of which are already represented in this
volume. Rather, it weaves a path through some case histories, some simple but emblematic, others
more complex and involving experimental counterparts.

The whole concept of tunneling is by its very nature semiclassical. Quantum amplitudes do what
they need to do according to quantum mechanics, and it is up to us to label something as tunneling
or not. We do so by comparison with classical mechanics, making tunneling an intrinsically semi-
classical idea. Potential barrier tunneling, a process wherein quantum eigenstates penetrate regions
of coordinate space which are classically forbidden, is the simplest kind of tunneling, found in every
elementary textbook on quantum mechanics.

Dynamical tunneling got its name by its contrast with barrier tunneling. Classical mechanical
trajectories sometimes refuse to go where they are allowed to by constraints other than potential
barriers, constraints such as action or angular momentum. In other words, even in the absence of
potential barriers, the dynamics may refuse to carry the trajectories from region A to region B, and
if the quantum amplitudes respect no such constraint in the quantized version of the same system,
we say the quantum system is “dynamically tunneling.” It is well known, for example, that when a
plane wave meets a potential barrier, some of it is backscattered even if the total energy lies above
the highest point of the potential barrier. Even better known is the wave amplitude found in the
shadow region behind a barrier. These are examples of dynamical tunneling, although in both cases
historically these phenomena have been called “diffraction.” The trouble with the term diffraction is



2 Dynamical Tunneling

that it is highly abused: one can find it describing all sorts of phenomena including scattering which
is perfectly classically allowed.

We prefer the umbrella term suggested long ago by Bill Miller, namely “classically forbidden
processes.” Such processes are usefully divided into two types: barrier tunneling and dynamical
tunneling.

One might easily get the impression in a book like this that quantum mechanics happily explores
everywhere that classical trajectories do, and then some, due to tunneling. But of course this is not
the case: certain types of Anderson localization represent quantum reluctance to go where classical
trajectories do. A very simple example of quantum localization (which we take to be an umbrella
term of which Anderson localization is one example) is a particle in a “box and corridor” shaped
as in Figure 1.1. All but a measure zero of the classical orbits in this system manage to escape;
however, it is intuitively obvious that the very lowest stationary states of the system are quantum
mechanically localized to the vicinity of the box. The reason is that the zero point energy cost of
being in the corridor is greater than the total energy of states which are confined to the larger box.
Therefore, the first few quantum mechanical eigenstates will be confined to the box and a short
“distance into the corridor.

1.1  MIRRORS AND SHADOWS

An impenetrable segment of a barrier wall, illuminated by trajectories from in front, possesses a
hard shadow, a refuge from the hail of projectiles. As is well known in all sorts of wave theories
including quantum mechanics, waves do not respect such hard shadows. Since the dynamics (in
this case ballistic straight-line trajectories) creates a hard shadow, penetration of the waves into the
shadow region is an example of dynamical tunneling. An equally good but less commonly used
example is the reflection from the front surface of the mirror, from one point to another, along a
path that cannot be reached by a specular bounce.

Consider the source point A and the receiving point B as shown in Figure 1.2. According to the
Kirchhoff approximation, we may consider the total illumination at B to be a sum of all the ampli-
tudes which reach a point x on the mirror, and from there scatter to the point B. The amplitude

FIGURE 1.1 Box and corridor (the lines represent hard walls, the potential is flat inside, and the corridor
extends forever to the right) which supports many bound states below the energy of the first state which
propagates down the corridor. All but a set of measure zero trajectories escape, however, independent of their
energy.
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FIGURE 1.2 Schematic showing the construction of the amplitudes scattered from the point A to the point B
by a mirror. The Kirchhoff construction supposes this amplitude to be decomposed in terms of waves arriving
at various points along the mirror, and then from these points to a final position here the point B. The total
amplitude at B is then obtained by adding up all the amplitudes along the mirror. Alternately, approximating
the integral by stationary phase results in a compact formula involving only the specular path shown in gray.

of illumination of each point x is the expected form ~ 1/1/L;(x) ¢*“1() where L, is the dis-
tance from the source to the point at x, and k is the wavenumber. [lluminated by this amplitude,
each point x radiates a spherical wave which reaches the point B, further attenuated by travel-
ing a distance L, (x); the overall contribution at B for that impact point on the mirror is therefore
~ 1/VL 01 /I, e¥20) = 1 /\/L L, *1()+12()  Adding up all such impact points, we
have the amplitude for scattering off the mirror from A to B as

s 0+La(x) 1 e
a= e dr = ——— kL"), (1.1)
J\/Lle L{x*)

where the integral is done by stationary phase over points x along the mirror. It is seen that the total
path length from A to a point on the mirror at x and then on to B is a minimum at the specular
scattering point. This should ring all sorts of bells (minimum action, etc.).

A straightforward stationary phase integration gives the right-hand side of Equation 1.1, where
L(x*) is the total length of the classical, specular bounce off the mirror, and x* is the specular, min-
imum action point. Thus, the Kirchhoff approximation gives exactly what we would have written
down to begin with.

However, suppose now that the mirror is too short, or the points A and B are moved over, such
that the would-be specular point is no longer on the mirror. According to what Miller would call
the “primitive semiclassical approximation,” a term pregnant with the possibility of doing better,
meaning stationary phase for everything in sight, the amplitude for the indirect path from A to B
is now zero. Stationary phase and the primitive semiclassical approximation always arrives at a
classical path; since there is no classical path which bounces, the correct answer at this level is
indeed zero.

The Kirchhoff approximation, the integral in Equation 1.1, is not necessarily intended to be eval-
uated by stationary phase. It is a perfectly good integral in its own right, and its exact evaluation
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FIGURE 1.3 A construction similar to Figure 1.2, carried out for the shadow region.

would give a finite amplitude for scattering off the mirror from A to B. The resulting approxima-
tion is somehow semiclassical, but not primitive any longer; some would say this is a “uniform”
approximation. The Kirchhoff integral in this case has a strong flavor of the more general initial
value representations, a term and technique also introduced in the 1970s by Miller.

The Kirchhoff approximation to illumination in the shadow, the dark side of the barrier, can be
handled in much the same way, using points x to either side of the mirror extending to infinity, and
writing the amplitude in the shadow region as an integral over all the illuminated points not on the
mirror but lying on a line which includes it (see Figure 1.3).

Books on the theory of the stationary phase approximation point out that the subleading contri-
butions after the stationary phase points, if any, come from any sharp cutoff in the integrals. Our
finite mirror gives precisely this type of cutoff. An end of the mirror may be thought of as a spheri-
cal source contributing a scattered amplitude of a magnitude which can be estimated by figuring the
flux through a region about one wavelength long.

This example illustrates one of the paradigms for dynamical tunneling: stationary phase gives no
contribution, since by definition there is no classical path connecting the regions in question. The
amplitude is then written as a uniform integral, which is evaluated by direct means, not stationary
phase. The result is a uniform semiclassical approximation, in some sense partly semiclassical and
partly quantum mechanical. In any case, such uniform or initial value methods often give an accurate
description of dynamical tunneling events.

1.2 ABOVE-BARRIER REFLECTION

Probably the most important paradigm for dynamical tunneling is above-barrier reflection, alluded
to at the beginning of this chapter. The reason for the prominence of this paradigm is that many
dynamical tunneling processes which appear to have nothing to do with the above barrier reflection
can be recast as such by canonical transformations. Once the above-barrier reflection is understood,
its characteristic signature can be seen in the phase space of quite different dynamical systems. The
common denominator is a phase space separatrix, crossing it in a way which is classically forbidden,
and quite analogous to barrier tunneling (Figure 1.4). In that figure, the dark gray path corresponds
to “ordinary” barrier tunneling, that is, jumping across the barrier to an equivalent energy contour on



