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FOREWORD

Over the past two decades major advances have been made both in numerical and ex-
perimental fluid mechanics. Some of these advances include the development of large
numerical codes for solving complex flow regimes and the development of laser veloci-
metry which has greatly increased the experimental capabilities for fluid measurement.
Gas-solid flow research, in particular, has been a beneficiary. For example, the interaction
between suspended particles and a supporting turbulent flow can be simulated and non-
intrusive measurements can record the velocity of particles transported in a complex flow
field. Presently, researchers are continuing to make use of these newly developed tech-
niques and the techniques are commonly used to solve more practical engineering prob-
lems in industry.

In light of this progress and in an effort to broaden the range of interests within the
Multiphase Flow Committee, the organizing committee is hoping to establish this sym-
posium as a biennial event. The objective of the symposium is to provide a forum for
both researchers and engineers to discuss recent advances or applications involving gas-
solid flows. The sessions are expected to address topics such as:

— analytical or numerical models for gas-solid flows

— recent advances in LDV techniques (particle sizing, concentration

measurements, etc,)

— flow visualization of gas-solid flows

— fluid-particle turbulent interaction

— flow of non-spherical particles

— engineering applications (fluidized beds, erosion, combustion,

separation devices, etc.)
although any topic related to gas-solid flows will be of interest.

Finally, the editor wishes to thank the authors, reviewers and session chairmen for
their contribution to the symposium. He also extends special gratitude to R. A. Bajura for
his continued advice during the organization of the symposium and to the invited speakers,
D. E. Stock and S. L. Lee, for their willing cooperation and assistance in organizing the
symposium.

John T. Jurewicz
Symposium Chairman
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PARTICLE DISPERSION IN TURBULENT GAS FLOW

D. E. Stock
Department of Mechanical Engineering
Washington State University
Puliman, Washington

Abstract

Particle dispersion in a lightly loaded gas flow
is governed by the scale of the gas phase turbulence,
the physical size and mass of the particles, and the
crossing trajectories effect. This paper reviews the
influence of these three parameters on particle mo-
tion in homogeneous turbulence. Experimental and nu-
merical work on particle dispersion in grid generated
turbulence, pipe flow and jet flow is reviewed. fi-
nally, areas where current theories cannot explain
experimental results and areas where experimental re-
sults are lacking are pointed out.






RECENT DEVELOPMENT OF PARTICLE DEPOSITION IN A
TURBULENT SUSPENSION FLOW

S. L. Lee

Department of Mechanical Engineering
State University of New York at Stony Brook
Stony Brook, New York

ABSTRACT

Highlights from laser-Doppler anemometer measure-
ments of turbulent flows of a two-phase suspension
are first described and peculiar features of flow
behavior at the particle level pointed out. A new
analytical approach based on the particle's dynamical
response to turbulent fluctuations is then outlined
to explain those measured peculiar features of flow
behavior.

INTRODUCTION

The deposition of solid particles or droplets
from a turbulent suspension flow to channel walls
has been the central subject of a number of theoret-
ical treatments. Most of these treatments are based
on the conventional three-layer flow structure in the
vicinity of the wall, the viscous sublayer, the buffet
zone and the turbulent core, which has been established
from studies of single-phase fully developed turbulent
channel flows. In the turbulent core and much of the
buffet zone, particles are assumed to be laterally
transported by turbulent diffusion to the edge of the
viscous sublayer. From there, they are assumed to
coast across the sublayer to form deposition on the
wall.,

Unfortunately, these conventional treatments all
contain an adjustable empirical constant which is not
universal for all flow systems. For instance, Wildi
[1] compared the prediction from one of such treatment
with the result of wall deposition measurement of a
mist flow of droplets over a size range. With the
empirical constant adjusted to produce reasonable
prediction for the larger droplets, the treatment
generates an awkward under prediction of four orders
of magnitude for the smaller droplets. This apparent
drawback points to the question of the correctness of
the very physics assumed in these theoretical treat-
ments and thus calls for the local in-situ dynamic
measurement of the two-phase suspension turbulent
flow itself.

MEASUREMENT OF DYNAMIC BEHAVIOR OF SMALL PARTICLES IN
NEAR-WALL REGION BY LASER-DOPPLER ANEMOMETRY

Particle sizing in a flow of suspension is a
fundamental subject in a variety of industrial proces-
ses of practical importance. The conventional methods
consist of collecting the particulates on a certain
collector and then analyzing them with a size analyzer
counter. The major drawback common to all these meth-
ods is that the measurement gives the distribution of
number flux density of particulates in the flow rather
than the distribution of number density of particu-
lates in the flow. Much more desirable techniques for
this kind of measurement are obviously those that make
no use of intrusive mechanical probes, thereby avoid-
ing the creation of disturbances in the flow and that
at the same time are capable of making in-situ veloc-
ity measurements of both phases and size measurement
of the particulates in the suspension with high re-
solution. Two of such techniques are the laser-Doppler
anemometry (LDA) schemes developed specially for two-
phase suspension flows: one for the smaller particulate
size range from a few mierons to about 240ym [2] and
another for the large particulate size range of over
about 240um [3]. Since most practical applications
concern themselves with particulates of up to a couple
hundred microns in size, the scheme for the small size
range is more useful for dynamic sizing.

The conventional laser-Doppler anemometry (LDA)
is a technique which utilizes scattered light from
very small tracer particles in a fluid to measure the
velocity of that fluid., In principle, the laser
anemometer is linear, needs no calibration, and mea-
sures the local velocity independently of the fluid
properties. A relatively small optical measuring
volume (240um, for instance) and inherently fast re-
sponse give it the ability to follow rapidly changing
velocities in the fluid without the introduction of
disturbances of other physical measuring probes [4].
This technique has been developed into a powerful re-
search tool in studying single-phase flows in the
last two decades, and its extension to two-phase



suspension flows, primarily due to the inherent dif-
ficulties concerning particle sizing [5,6], has met
success only in recent years [7].

The new generation of LDA for two-phase suspen-
sion measurement derives the particle sizing informa-
tion from the very Doppler signal from which the
information on the particle velocity 1is derived, thus
ensuring the maintenance of the same level of spatial
and temporal resolutions [8]. In addition to the
frequency which is related to the particle velocity,
the amplitude and path time of the Doppler signal are
also analyzed. By a suitable electronic discrimi-
nation scheme, the central core of the measuring
volume, Fig. 1, can be isolated in which the particle's
size becomes readily deducible.
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Fig, 1. Sketch of electronically isolated central

core of optical measuring volume (from ref. [8]).

Typically, for each run of the experiment a total of
from 20,000 to 100,000 particle Doppler signals to-
gether with Doppler signals from small (submicron
size) contaminates, which serve as tracer particles
for the carrier fluid in between every two successive
particle Doppler signals, are collected to formulate
the statisties of velocity and particle size of the
suspension.

The optical system for this scheme is shown in
the sketch of Fig. 2 in which the two velocity
optical channels are separated by the polarities of
the respective beams. Electronic circuits, mostly
custom-built, are used to process the signals coming
from the two photomultiplier tubes and the final out-
puts, in digital form, are fed to a PDP-11/34 mini-
computer through the custom-designed computer
interfaces and the PDP-11/34 interface. The data
are stored in the memory of a hard disc and analyzed
by software. The data acquisition system has been
so automated that it is possible to collect as many
data points as required under software control.

An experiment was conducted of the turbulent
flow of a dilute water droplet-air suspension with
a droplet size range of up to 100um inside a vertical
10 mm by 25 mm rectangular channel [9]. Results
obtained include the droplet size and number density
distributions and the droplet size and two-dimensional
velocity distributions for a total of 20,000 droplets
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Fig. 2. Sketch of optical arrangement (from ref. [g]).

individually measured at each of a number of measuring
locations across the channel. Figure 3 shows plots
of droplet number density against distance from the
wall for droplets of eight size ranges each of which
is designated by its median value from 10 to 95 um.
The mean transverse velocities are indicated by the
horizontal arrows the length of which represents the
relative magnitudes. It is clear that droplets smaller
than 50 ym are generally found to tend to move towards
the wall in the near-wall region with the most vigo-
rous transverse migration exhibited by droplets of
about 30 uym. The conventional theoretical treatments
are all totally incapable of providing an explanation
to this newly discovered phenomenon.

MEASUREMENT OF DYNAMIC BEHAVIOR OF LARGE PARTICLES IN
NEAR-WALL REGION BY LASER-DOPPLER ANEMOMETRY.

By a scheme developed by Durst and Zare [10]
for the determination of the velocity of a large
spherical particle from the beat frequency of the
moving fringe pattern formed by the two reflected
beams from the particle, Lee and Durst [1l] measured
the turbulent upward flow of a glass particle-air
suspension with one uniform size particles in a pipe
of inner radius of 2.09 cm. The local time-mean axial
velocities of the particles and the air at the various
radial locations for particles of 100 ym, 200 um,
400 ym and 800 ym are plotted in Figures 4a, 4b,



0 b
10 10w .~
’/
I;o“. ‘o:

/ -

f ~§-~~ -
<
TN oe-- -0 201
' / “0
r
b

10

DROPLET NUMBER DENSITY, NO./CC/MICRON

L]
)
/
/

¥
/

10 1 1 1

[=]
P
[N)
(7]

DISTANCE FROM WALL, mm

Fig. 3. Sample sketch of droplet behavior in a
suspension channel flow (from ref. [9]).

4c and 4d, respectively. Generally, the particles
were found to progressively lag behind the air due
to the effect of gravity, the exception being the
situation in the near-wall region for the 100 um
and 200 ym particles in which the particles were
found to lead the air. The thickness of this region
was about 20% and 10% of the pipe radius for the
100 ym and 200 um, respectively. On the other hand,
for the two larger particles of 400 ym and 800 um,

a sizable particle-free near-wall region was found,
the thickness of which depended on the particles'
size. These newly discovered peculiar phenomena in
the near-wall region again clearly defy any predic-
tion of conventional theoretical treatments.

A NEW THEORY OF DEPOSITION BASED ON A PARTICLE'S
DYNAMICAL RESPONSE CHARACTERISTICS TO FLUID TURBULENCE

In analyzing a particle's behavior in turbulent
flow, Rouhianinen and Stachiewicz [12] made use of
the idea of frequency response of the particle de-
veloped by Hjelmfelt and Mockros [13]. An important
result is the ratio of the amplitude of oscillation
of the particle to that of the fluid as a function
of the oscillation frequency of the fluid. In treat-
ing the problem of wall deposition, Lee and Durst
[11,14] introduced the model of the particle's
response characterized by a cut-off frequency below
which the particle responds fully to the fluid oscil-
lation and above which the particle is insensitive
to the fluid oscillation. This cut-off frequency
is a function of the particle's size, the ratio of
density of the particle to that of the fluid and the
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Fig. 4. LDA-measurements in two-phase flows:
mean velocity profiles of air and
glass spheres in upward pipe flow

(from ref. [113)

fluid kinematic viscosity. The particle's motion is
determined by turbulent diffusion for fluid oscillation
frequencies smaller than the cut-off frequency and the
mean, or quasi-laminar, motion of the fluid for fluid
oscillation frequencies greater than the cut-off fre-
quency. In an application to the two-phase turbulent
pipe flow, a most energetic frequency of the fluid was
evaluated as a function of radial location from exist-
ing results for the turbulent pipe flow of a single-
phase fluid. Matching of the cut-off frequency from a
particle's frequency response and the most energetic
frequency from the turbulent fluid motion then deter-
mines the cut-off radius for the particle within the
pipe. Within the cut-off radius lies the turbulent
diffusion core and outside the cut-off radius the
annular quasi-laminar region for the particle. The
cut-off radius increases with the decrease of particle
size for the same flow. Figure 5 shows a sketch of
this new flow field classification.

AN EXPLANATION TO MEASURED MIGRATORY BEHAVIOR OF
SMALL PARTICLES

We now return to the aforementioned, newly dis-
covered phenomenon of most vigorous migration of
particles of about 30 um in the near-wall region of a
suspension duct flow as shown in the sketch of Fig. 3.
According to the new theory, up to the cut-off radius,
the particle's transverse motion is determined by
turbulent diffusion in the turbulent core. At the
cut-off radius, the particle is ejected into the quasi-
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laminar region to coast towards the wall. Since the
cut-off radius increases with the decrease of par-
ticle size for the same flow, the smallest particle
will have the thinest quasi-laminar region to cross.
However, because the ratio of resistance to inerties
forces is inversely proportional to particle size,
the smallest particle will experience the severest
resistance and therefore slow down most rapidly, as
shown in the top sketch of Fig. 6.
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Fig. 6. Migratofy behavior of small
particles

On the other hand, the largest small particle will
experience the lightest resistance over the thickest
quasi-laminar region and therefore slow down consider-
ably on reaching the wall as shown in the bottom sketch
of Fig. 6. Somewhere between these two extremes, there
exists an optimum-size particle which will possess

the highest migratory velocity near the wall as shown
in the middle sketch of Fig. 6. This may very well be
the case of particles of about 30 ym in the afore-
mentioned experiment.

AN EXPLANATION TO MEASURED MIGRATORY BEHAVIOR OF
LARGE PARTICLES

Next, we return to the aforementioned, newly
discovered phenomena of the creation of a particle-
free zone and the existance of a slip-velocity
inversion region near the wall in the turbulent up-
ward flow of a glass particle-air suspension in a
pipe as shown in the sketches of Fig. 4. According
to the new theory, for the flow under consideration,
the cut-off radius vanishes at a particle size of
21 ym and remains zero for larger sizes. In other
words, as far as these particles (100 ym, 200 ym,

400 ym and 800 ym) are concerned, the whole flow
across the pipe has become quasi-laminar and their
motions are controlled by the mean fluid motion.

In the theories of laminar boundary-layer flows
of a two-phase suspension by Otterman and Lee [15,16],
Lee and Chan [17], and DiGiovanni and Lee [18], the
particles at the edge of the boundary layer have neg-
ligible transverse velocity and the fluid is leading
the particles in longitudinal velocity. The use of
the transverse shear-slip 1lift force first derived by
Saffman [19] helps the creation of a low particle con-
centration zone at the wall which has been verified
by the experiments of Lee and Einav [20].

Use will be made of this shear-slip 1lift force,
whose direction depends on the direction of the shear,
in the analysis of the quasi-laminar flow of a sus-
pension in a vertical pipe. The particle's migratory
behavior is linked to the directional reversal of this
1lift force on two sides of the transverse matching
position of the longitudinal velocities of the fluid
and the particle in the near-wall region as shown in
the sketches of Fig. 7. For a given main flow in
which the particle is lagging behind the fluid in the
longitudinal direction, the particle coming into the
near-wall region initially experiences a combined re-
sistance of drag and 1ift forces, If the initial
transverse particle velocity in the interior of the
flow is high enough for it to pass through the match-
ing location, the 1lift force will reverse its dirvection
and help propel the particle towards the wall. There-
fore, this explains the existence of a slip-velocity
inversion region near the wall for the 100 um and
200 ym particles as shown in Fig.'s 4a and 4b, respec-
tively.

On the other hand, if the initial transverse
particle velocity in the interior is not high enough
for it to reach the matching location, the particle
will be kept away from the wall in a way similar to
the finding of two-phase suspension boundary-layer
studies mentioned above. Therefore, this explains
the creation of a particle-free zone near the wall
for the 400 ym and 800 ym particles as shown in Fig.'s
4c and 4d respectively.
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CONCLUSION

Development of laser-Doppler anemometry in dynamic
particle sizing has brought about new discoveries of
migratory behavior of particles in the near-wall re-
gion which defy the conventional theoretical treatments
on particle deposition. These new discoveries in turn
have stimulated the successful development of a new
dynamical response theory to provide the needed
explanations.
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ON THE RELATIONSHIP BETWEEN BROWNIAN MOTION AND THE STATISTICAL
MOTION OF DISCRETE PARTICLES IN A TURBULENT FLOW

Central Electricity Generating Board
Berkeley Nuclear Laboratories
Berkeley, Gloucestershire, England

ABSTRACT

It is shown that Brownian Motion is a special
case of particle motion in a turbulent fluid for
which

(a) the particle Reynolds no. is very much
less than unity,

(b) the timescale of fluid motion is much
shorter than the particle relaxation time,

(c) the systematic drag and fluctuating
driving force are thermodynamically related through
the fluctuation-dissipation theorem. This implies
equipartition of energy of particle and fluid motion
which is invalid in hydrodynamic turbulence.

By using an expression for the particle partial
pressure the particle diffusion coefficient in a
turbulent fluid is derived in a similar manner to the
way Einstein derived the Brownian diffusion
coefficient. In addition the Fokker Planck equation
for Brownian motion is generalised to encompass
particle motion in a turbulent flow. One of the
terms in this equation are shown to be important in
the 2 phase flow equations.

INTRODUCTION

The statistical motion of small particles
suspended in a turbulent flow is a problem of great
practical importance both industrially and
environmentally and has received considerable
attention in the past. Our own particular interest
in the phenomenon is motivated by a need to know the
plate out of in core activated particulate from the
gas coolant of an Advanced Gas Cooled Reactor (AGR)
both for safety assessment and normal operating
conditions. Particle sizes may range from submicron
up to 1000 pm in diameter. Our particular concern is
with those particles greater than a micron which by
virtue of their inertial response to changes in flow,
cannot be assumed to follow the random fluctuations
in the turbulent coolant. Values for the particle

diffusion coefficient are necessarily of great
importance in determining the particulate plateout
onto a reactor component exposed to the flow.

There is an obvious similarity between this
type of motion and that of Brownian (B.M.). In the
one case (B.M.) the random driving forces originate
in the random collisions of particles with fluid
molecules whilst in the other case this agency is
provided by fluid induced drag forces derived from
the random interaction of particles with turbulent
eddies. Recently this analogy has been explored by
extending the application of the fluctuation-—
dissipation theorem of equilibrium thermodynamics to
turbulent motion (Gitterman and Steinberg, 1980).

The apparently interesting result of this
examination is that in homogeneous stationary
turbulence the long time particle diffusion
coefficient as with that for B.M. decreased with
increasing particle diameter. This was in
contradiction to previous theoretical work on the
subject, notably Tchen (1947), Hinze (1959), Reeks
(1977) and Pismen and Nir (1978). Here it was shown
in general that in the absence of any external force,
e.g. gravity, the particle diffusion coefficient
approached an assymptotic limit with increasing
particle diameter. More precisely this limiting
diffusion coefficient eij(ub was given by

Eij(w) =./:n REij(s) ds (1)

where Rg is the Eulerian velocity autocorrelation

of the turbulence in a frame moving with the mean
velocity of the flow.

More importlantly, the Gitterman and Steinberg
result is also at variance with recent accurate
measurements of the particle diffusion coefficient
made by Wells and Stock (1983). They were mostly
concerned with the measurement of the effect of
crossing trajectories (Yudine, 1959). Measurements
were made of the diffusion coefficients of 5 um



(low inertia) and 57 pm (high inertia) spherical
particles. They found that for large diffusion times
in the absence of drift the particle diffusion
coefficients for both sizes were approximately equal
(in fact the diffusion coefficient of the 57 um size
was slightly greater than that of the 5 um). They
also found good agreement with measurements based on
the particle Eulerian velocity autocorrelation, all
of which is consistent with equation (1). The beauty
of their experiment was that they were able to
separate out inertial effects from crossing
trajectory effects, a feature not possible in the
experiment (Soo, 1967) quoted by Gitterman and
Steinberg as confirmation of their formula. In fact
almost all of the particle size dependence of
particle diffusion coefficient observed in that
experiment was most probably attributable to crossing
trajectories.

This paper was initiated in order to resolve
this dichotomy of theoretical approach. However, in
the process of examining the fundamental statistical
differences between B.M. and particle turbulent
motion (T.M.) it has taken on aspects more important
than our original intent.

For example we shall approach the problem of
particle motion in a turbulent fluid by considering
the concept of partial pressure. By exploiting the
Clausius Virial theorem commonly used in
thermodynamics we shall obtain an expression for the
pressure exerted by an ensemble of particles and then
use this expression to obtain the particle diffusion
coefficient. In this respect we shall adopt an
argument used by Einstein in his original treatise on
B.M. (Einstein, 1905). Here, the reader may recall,
the diffusion coefficient was derived by considering
the equilibrium of Brownian particles in a
gravitational potential. Einstein looked upon the
equilibrium as arising from either

(a) a balance between the pressure gradient
and the gravitational force per unit volume, or

(b) a balance between the current due to
gravitational settling and the gradient diffusion
current.

The particle diffusion coefficient we obtain
does not have the same form as for B.M. Indeed, it
has the same form and lack of inertial dependence as
that predicted by earlier work previously quoted. We
shall show that this difference exemplifies the
invalidity of the fluctuation dissipation theorem in
hydrodynamic turbulence.

Our attention is then drawn to a consideration
of the tramsport equation for particles in a
turbulent fluid. We shall consider the simplest way
the Fokker Planck equation for B.M. might be
generalised to encompass motion in which the particle
relaxation time is comparable or less than the time—
scale of fluid motion. We do this by considering in
addition a diffusion current in phase space
proportional to the spatial gradient of the phase
space concentration. This extra term turns out to be
completely consistent with the existence of the
partial pressure term previously derived and indeed
we shall use it to evaluate the constant of
proportionality (phase space diffusion coefficient).
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THE FLUCTUATION DISSIPATION THEOREM

The origin of this theorem is based upon the
fact that in a thermodynamic system like B.M. the
impact of the molecules gives rise to not only a
fluctuating random force but in addition a systematic
frictional force. This means that the frictional
force and the fluctuating force must be related in
some way because they are of the same origin. The
fluctuation-dissipation theorem is an expression of
this fact. What is important to realise is that it
also implies some other basic property of the system.
In a classical thermodynamic system like B.M. it
embodies the notion of thermodynamic equilibrium i.e.
the number of accessible states, Q(E), available to a
system with energy E is of the form

AE) ~ SE/KT 2)

where T is the absolute temperature and k is
Boltzmann's constant. A manifestation of this
concept is that there exists an equipartition of
energy betwen the particle and the molecules of the
surrounding fluid. The systematic velocity imparted
to the particle is regarded as only slightly
perturbing the equilibrium of the molecules in the
immediate vicinity and that these rapidly establish a
new equilibrium with the surrounding fluid. If the
particle velocity V changes in time it must do so in
a manner such that a new quasi-steady equilibrium is
established at each value of time. Quite naturally
the average frictional force must relate back to the
energy AE imparted to the fluid as if that energy
were associated with a new system in quasi-steady
equilibrium with energy (E+AE), i.e.

QE+AE) ~ e(E+LE)/KT 3)

It can be shown (Reif, 1965) that as a result of (3),
the average frictional force <F> is

<E> = b <FAE> (4)

with E = -ft v(s)F(s)ds (5)
o

We have finally

(> = - tr " w(s)<F(oIF(t-s)>ds ()
(e}

This is more specifically a statement of the 2nd
fluctuation dissipation theorem (Kubo, 1966). The
first dissipation theorem is the one more commonly
quoted and relevant to Brownian motion. Here one
recognises that the time scale of v(s) is much
greater than F(s). Hence we may write equation (6)
as

F> = - T fm <F(OIF(t)> dt
o]

and the friction coefficient ¢ is thus

= ./:’ <F(o)F(t)>dt ™)

The 2nd fluctuation dissipation theorem is clearly a
more general statement of the relationship between
the average systematic force and its fluctuating
counterpart for classical thermodynamic systems.

Kubo (1966) gave an even more general statement of
the theorem when he extended it to quantised systems.
But the general features of the proof are the same.



The new density matrix of the system perturbed by an
external force is calculated to first order in the
unperturbed equilibrium density matrix.

It is true that one can begin with a
generalised form of the Langevin equation of motion
of the form

dv ft y(t-s)v(syds = ££8) 8)
[o]

where f£(t) is the fluctuating force, and m the mass
of the particle, and derive a purely formal
relationship between <f(o)f(t)> and y(t), i.e.

ey = EQEED ©

But in no way can this be regarded as a causal
relationship in the same way that is implied by e.g.
equation (7). It is merely a formal property of the
equation of motion. It only becomes a causal
relationship of meaningful importance when we
recognise some extra property of the system i.e.

miv® = kT (10)

This is the essential flaw of the analysis of
Gitterman and Steinberg. They write the equation of
motion for a particle in a turbulent fluid as a
generalised Langevin equation.

t
g%"'f y(t-s)v(s)ds = Bu(t)
o

Here u(t) is the local velocity of the fluid and B is
a constant of the motion whose meaning is somewhat
obscured by the fact that it is not the normal Stokes
relaxation time. Quite formally in accord with
equation (9)

(1)

v
d
an (=) = (v )2 (13)

32/; <u(o)u(t)>dt

where e€(=) is the long time particle diffusion
coefficient (although they do not make this clear,
equation (13) 1is only correct for Y(o)'cf2 << 1 where
T¢ 18 the fluid integral scale). As before equation
(f3) is interesting but quite useless in predicting
the behaviour of e in relation to that of the fluid
since we require some extra knowledge of <v2>. As
with B.M. Gitterman and Steinberg base <v® upon the
equipartition of energy. Although equipartition of
energy is true for B.M. it 1is inconsistent with the
form of the energy spectrum for hydrodynamic
turbulence.

It is quite impossible to follow the same route
for hydrodynamic turbulence as for B.M. in pursuit of
a fluctuation dissipation theorem. We cannot make
such simple statements equivalent to

QE) ~ eE/KT

and indeed if one were to exist it would relate to
the totality of the turbulent field i.e. all spatial
and temporal moments of the turbulence velocity
field, and be quite unusable in a practical sense.

Let us now consider equation (1l1). There seems
no merit in using this equation as a basis for motion
rather than the simpler local equation commonly used
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i.e.
4 = pu-v) (14)

Here

B=¢/m

Indeed this equation has a more sound theoretical
basis. We are implying here that B is determind by
the average motion of the molecules within an eddy.
That we can do so implies that the timescale of
molecular motion is much shorter than the period over
which both u and v may vary. u and v are in fact
quasi-steady. The shear stresses are evaluated to
first order in the fluid velocity gradients,
regarding these quantities as perturbations on the
equilibrium phase space density for a flow of
constant spatial velocity u. It is true that in
general the stresses ought to be non local, but the
linear approximation would appear quite adequate for
flows normally encountered in nature. To reject this
hypothesis would be to question the validity of the
Navier Stokes equation for hydrodynamic turbulence.
There seems adequate proof that it is a correct
representation of the process even though its
solution is unknown (see e.g. Leslie, 1973,
Batchelor, 1971). The intractibility of the
turbulence problem is associated with the non linear
nature of the convection, rather than an incorrect
representation of the viscous stress.
Straightforward application of equation (14) would
give equation (1) for the long time particle
diffusion coefficient. The fact that it is different
from the diffusion coefficient for B.M.
(=) = §L (15)
need not be of any real concern. It is simply that
in B.M. C is related to the correlation function of
the random driving force through the lst fluctuation-

dissipation theorem whereas in T.M. it is not. More
transparently in either case
€ =E"1" f <E(0)£(s)>ds (16)
o
where
f<f(o)f(s)>ds = £2 [<u(o)u(s)>ds .M.  (17)
= CkT B.M. (18)

Substitution of equations (17) and (18) gives
equations (1) and (15) respectively.

DERIVATION OF THE PARTICLE DIFFUSION COEFFICIENT FROM
THE PARTIAL PRESSURE OF PARTICLES IN A TURBULENT
FLUID

It is instructive to recall the way Einstein in
1905 first derived the well-known expression (15) for
the diffusion coefficient of a Brownian particle.
Using thermodynamic arguments he was able to show
that the pressure p exerted by the particles was
identical to form to that of a dilute solution of
solute molecules, namely

p = kTp (19)

where p i1s the dilute number density of the particles
suspended in the fluid.

He then considered isothermal equilibrium of
these particles under the action of a constant force
K in the x-direction. The equilibrium concentration
was then given by a balance between the net applied



force per unit volume and the pressure gradient,

i.e.
-g-o
Kp - kT 82 = 0

Alternatively we could regard this equilibrium as a
balance between a constant current provided by K of
the form and a diffusion current - g ¥ where € is

the long time particle diffusion coefficient i.e.

%ﬂ - € %f =0

Comparing (21) with (20) we obtain equation (15).

(20)
or using (19)
(21)

(22)

It suggests that we might obtain an expression
for the particle diffusion in T.M. by applying
similar arguments. We require, however an equivalent
expression for the particle partial pressure. To do
this we shall use the Clausius virial theorem of
thermodynamics that is normally used to obtain the
correction terms for the pressure of a non ideal gas
due to the intermolecular forces.

Let the particles be suspended in an isotropic
and stationary turbulent fluid of volume V, and let
their number density be p and their individual mass
m. We suppose that the equation of motion of a
particle is of the form given in (14) with the
addition of a force X. Thus, for one component we
have

mxy = Xy - O+ Couy(t) (23)
where x is the p0fit10n of the particle at time t.
Multiply (23) by 7 x4 and sumifg over i. We have

2 5 %
?17 n _Zdi x1x1+‘}: ‘g? Cxi"i%’ e i ’12 Xyxgt ’E’ Cxjuy(24)
Summing over all particles within the volume and
assuming equilibrium means

Vom<v2y = <x, (t t)- b >(25
% A Z'CVP xi( )ui( ) all par{iélgs )

where <> means an ensemble average and <v2> = <v12> =
<v22> 4% 2). The virial —4% by (xixi) is made up of
all the forces between the particles (in this case

zero) and the stresses across the physical or
geometrical boundary. The stress/unit area in this
case is the pressure, and we may insist that the
pressures on any boundary or across any internal
surface are always equal in the absence of surface
tension and external fields of force. It is clear
therefore that after converting a surface integral to
a volume integral (Fowler, 1966)

-l axx> =3V (26)
and that substituting in (25) we have
R = mv® + F € <xy(O)uy(8)> (27)

We may simplify the R.H.S. still further by noting
that from the equation of motion

v = sfm e B8 (u(o)u(s)> ds  (28)
and ©

K (B)uy (£)>=3 [ =(1-e"PS)<u(o)u(s)>ds for tae (29)
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where B = %, and the indices are redundant. Thus
equation (27) reads
%= Cf <u(o)u(s)>ds (30)
o

In this formula we must interpret u(s) as the
fluid velocity at time s measured along a particle
trajectory.

With the aid of equations (27) and (29) it is
interesting to draw the analogy of B.M. and T.M. with
an ideal and non ideal gas. For an ideal gas we
have

%=k’r
as with B.M. For a non ideal gas the R.H.S. is
modified by the addition of contributions to the
virial from intermolecular forces. In T.M. these
contributions are from the resistive motion due to
the fluid. We note from (29) this contribution
vanishes when B'l >> the timescale of the random
forcing motion. This is precisely the disparity of
particle and molecular timescales for B.M. Thus
together with the fluctuation dissipation
relationships equation (27) is entirely compatible
with B.M. We note however that equation (30) for
T.M. is particle interia dependent which equation
(19) clearly is not.

Employing the same argument for equilibrium
under an applied constant external force as Einstein
did for B.M., we find in this instance

€ =‘/°'m <u(o)u(s)>ds (31)

entirely consistent with equation (1).
THE TRANSPORT EQUATION FOR PARTICLES IN T.M.

What makes B.M. in general different from T.M.
is that it is an example of a Markov Process. This
stems from the fact that the timescale of particle
motion is so much greater than the timescale of
molecular motion. We may generally assume therefore
that the same will hold for T.M. if that same
disparity of timescales exists between particle and
fluid motion. We may argue that the average phase
space distribution W(x,v,t+At) is related to the
distribution w(x—Ax v—Av t) in the following manner
(Chandrasekhar, 1943)

W(x,v, t+At) =f dax f dAv T(x-Bx, V-0V, t) ¥
- Allsx  — all Av 323

(%= A%, v=Av; Ax, Av, At)
where ¥(x-Ax,v-Av; Ax,AvAt) 1s the transition
probability that a particle with velocity v-Av and
position x-Ax at time t will have velocity v __and
position x at time t+At later. We note it depends
upon At in time and not upon t. At is considered
sufficiently short that we can expand to first order
in At on the L.H.S. and to first order in Ax and Av
on the R.H.S. of (32). Furthermore we assume Axtv
are perfectly correlated so that -
¥(x,v; Ax, Av, At) = ¥(x,v; Av, At) &(Ax-vAt) (33)
Because of the Central Limit Theorem V¥ is Gaussian in
AvtBv (Chadrasekhar, 1943). By so doing, we
eventually obtain the Fokker Planck equation



