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PREFACE

The forces between molecules are of interest to scientists in=a~wide range
of disciplines as these interactions control the progress of molecular
collisions and determine the bulk properties of matter. Some twenty-five
years ago, the subject was treated comprehensively in the classic text by
Hirschfelder, Curtiss, and Bird: The molecular theory of gases and liquids.
In addition to giving a thorough account of the molecular theory of
matter, much of which is still relevant at the present time, this book also
attempted to reconcile the properties of matter in terms of simple
intermolecular potential energy functions such as those due to Lennard-
Jones. This aspect of their book has not stood the test of time, although it
was not until the 1970s that a firmer foundation to the subject could be
laid. During this period a quantitative understanding of the intermolecu-
lar forces of a number of monatomic species—in particular the inert
gases—was achieved and found to bear little relation to the simple
functions widely employed previously. These advances have been based
on a number of factors such as the development of new types of
experimental measurement, new attitudes to data analysis and the availa-
bility of high-speed computers, leading to a subject very different from
that described by Hirschfelder, Curtiss, and Bird. It is now important to
reassess the subject of molecular interactions in the light of this transfor-
mation.

This book provides a wide-ranging account of the determination of
intermolecular forces. It describes both the techniques that have been
developed in recent years and the potentials that have resulted from their
application. Particular attention has been paid to molecular beam scatter-
ing and the spectroscopy of van der Waals dimers, which can provide
extremely detailed information about certain aspects of intermolecular
potentials. A comprehensive account is also given of macroscopic, ther-
mally averaged properties such as second virial coefficients and dilute gas
transport properties, which have recently become re-established as im-
portant sources of information about intermolecular forces. Among the
factors which have contributed significantly to the progress of the past ten
years are an increased appreciation of the complementary nature of the
information contained in these different properties and the development
of more direct routes from properties to potentials. Both these aspects are
emphasized strongly in this book.

In writing about intermolecular forces a certain arbitrariness in
defining the boundaries of the subject is necessary. We have, for example,

t Throughout this book, these will be referred to quite simply as ‘potentials’.
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not included the topic of hydrogen bonding and have referred only briefly
to interactions involving ionic species. Naturally, we have given most
attention to those systems (mainly monatomic) where the potential is
known with high accuracy and have not devoted much coverage to the
many superficial attempts to deduce potential functions from either
limited data or inadequate techniques. However, in the case of
polyatomic molecules, even though little quantitative information is at
present available, we have tried to indicate those results which should
provide a basis for future progress. Traditionally, many attempts have
been made to deduce pair potentials from condensed phase properties.
However, as some uncertainty still surrounds the role of non-pairwise
additive contributions to intermolecular energy, pair potentials are most
soundly deduced from those properties which involve only pair interac-
tions. For this reason we have given only a very general account of the
use of condensed phase properties in determining pair potential functions.

It is impossible to separate the determination of intermolecular
forces from an understanding of their relationship to molecular and
thermophysical properties, and any book of this sort must of necessity
include a considerable amount of statistical mechanics and scattering
theory. To give a comprehensive account of these subjects would lead to
a work of excessive length. Our practice has been to include sufficient
coverage of only those aspects that are essential to an understanding of
the elucidation of intermolecular forces. It should be emphasized that this
is not a treatise on the fundamental theory of intermolecular forces,
although one chapter has been assigned to this topic.

It is our intention that this book should prove useful to a wide variety
of scientists. Some may be senior undergraduates or new graduate stu-
dents who require a modern account of the fundamentals of the subject,
some will be research workers directly concerned with investigating the
nature of the forces between molecules, whereas others will simply wish
to use the best current knowledge of the force laws to calculate the
thermophysical properties of substances in which they are interested. In
order to cater for such diverse interests, different sections of the book
have been consciously written at several levels. A key indicating these
levels is attached to the table of contents. This identifies those sections
which, taken together, provide a suitable introduction for those approach-
ing the subject for the first time, and those sections, largely theoretical,
which may not be necessary for those readers more concerned with the
application of the results contained in the book rather than their deriva-
tion. To this end we have felt it advisable to cover some subjects more
than once to provide a fairly comprehensive treatment of the subject at
each level. It is inevitable that such a format should lead to in-
homogeneities in the text which may trouble those who wish to read the
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book through. However, we believe that the benefits of this approach far
outweigh the disadvantages.

In addition to its pedagogical role, the book is intended to be a work
of reference. With this in mind, we have included a large quantity of
numerical material in the text and appendices. This comprises tabulations,
both of useful modern potential functions, and of the equilibrium and
transport properties calculated using them. We have also given copies of
computer programs which enable equilibrium and transport properties to
be calculated for any given potential function. In addition, a quantity of
selected experimental data is tabulated for a limited number of reference
substances. After decades of relative stagnation, the field of intermolecu-
lar forces is now progressing at a rapid rate. In compiling the material in
the book we have sought to emphasize those aspects of the subject which
we believe to be the least ephemeral. To those building on the founda-
tions described in this book, we would make a strong plea for extreme
caution. The history of research into intermolecular forces shows that the
most common pitfall has been overconfidence. Again and again workers
have been too easily satisfied by superficial answers, and have chosen to
ignore the limitations of their approach. We now appear to have a solidly
based understanding of the forces in many monatomic systems and it is
important that, as we turn to more complicated molecules, we do not
expect easy results. Progress will only be made by an uncompromisingly
critical approach.

The authors wish to thank their friends and colleagues for the
enormous help which they have received in the preparation of this book.
Their contributions are acknowledged below. We would be most grateful
if readers would draw any mistakes to our attention and would be most
happy to receive general comments and criticisms.

London and Oxford G. C. M.
May 1980 M. R.
E. B. S.
W. A. W.
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1
INTRODUCTION

1.1. Historical background

The molecular theory of matter has its roots in the philosophical specula-
tions of the atomists of the fifth century Bc, Leucippus and Democritus,
who suggested that all matter was composed of small, rapidly moving
particles they called atoms. This idea, somewhat modified to avoid the
determinism which atomists saw as a natural corollary, was incorporated
by Epicurus into his wider philosophical scheme and was an important
influence on Greek and Roman thought. It was expounded in a long
poem On the nature of the universe by Lucretius,' a Roman Epicurean of
the first century Bc. Many of the features of the molecular theory
described by Lucretius are in surprising accord with modern views.
Matter was conserved in all processes, there was a large, but finite,
number of species of atom, and the atoms moved at high speeds. The
deterministic consquences of the model were avoided by allowing the
atoms to ‘swerve ever so little from their course’ at random times and
places—an ingenious precursor of the uncertainty principle. The concept
of molecular interactions was also developed, but the distinction between
chemical and physical forces between the atoms was of course missing.'

Again, things that seem to be hard and stiff must be composed of deeply indented and
hooked atoms and held firm by their intertangling branches. In the front of this class stand
diamonds . . . Liquids on the other hand must owe their fluid consistency to component
atoms that are smooth and round.

The relationship between molecular properties and the viscosity of
fluids was also considered.’

We see that wine flows through a strainer as fast as it is poured in; but sluggish oil
loiters. This is no doubt either because oil consists of larger atoms or because they are

hooked and intertangled and therefore cannot separate so rapidly, so as to trickle through
the holes one by one.

These ideas represented the limit to which molecular theory could be
developed. Further advances required new experimental information that
could not be obtained from a casual inspection of the universe. Two
millenia were to pass before the techniques were developed and the
necessary experiments performed. From the fifteenth century new obser-
vations laid the foundation for a scientifically based dynamic molecular
theory. But despite many important theoretical developments, starting
with Bernoulli? in 1738, the main tenets of the modern molecular theory
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of matter, in particular the idea of molecular motion in gases, were not
generally accepted until the latter half of the nineteenth century. The
powerful mathematical theories of Clausius, Maxwell, and Boltzmann
between 1850 and 1890 brought to fruition the kinetic theory of gases.>™
After this period it was universally recognized that temperature and
pressure are both related to the motion of the molecules. The pressure is
due to the force that molecules exert on the walls of a container by virtue
of their collisions with the walls and temperature is a measure of the
average kinetic energy of the molecules.

The idea of intermolecular forces also has a long history. The
concept of molecules as point sources of attractive and repulsive forces
was first formulated by Boscovich (1783). He recognized that molecules
must repel each other at very small separations but assumed that the
attraction and repulsion alternate a number of times as the separation
increased. By the early nineteenth century the fact that molecules could
repel each other was acceptable even to the advocates of the phlogiston
theory of heat who regarded gaseous molecules as stationary objects held
in their positions (on a lattice) by mutual repulsion. Later, the modern
view that molecules repel each other at small separations and attract each
other at long range became established. It was clearly stated by Clausius
in 1857.

Maxwell incorporated into the description of the kinetic behaviour of
gases the idea that molecules exerted forces on one another. He pre-
sumed that the forces were entirely repulsive in character and that they
decayed as the separation between the interacting molecules increased.
He was able to deduce the temperature dependence of the viscosity of a
gas of such molecules. Boltzmann, attempting a similar calculation, in-
voked a series of intermolecular force laws all of which contained
attractive components. It is interesting to note that his results provided an
equally acceptable description of the behaviour of the viscosity of gases to
that of Maxwell despite the gross differences in the assumed force law. In
1873 van der Waals developed an equation of state for a gas whose
molecules were supposed to be impenetrable rigid spheres surrounded by
an attractive force field. This concept enabled van der Waals'® to show
that the pressure exerted by such a gas lay below that for a gas whose
molecules were non-interacting points (the perfect gas) owing to the
retardation effect of the attractive forces on molecules colliding with the
wall. In addition, the non-zero volume of the gas molecules reduced the
volume available for motion of molecular centres, below that for non-
interacting points. Thus he deduced the van der Waals equation of state

<P+%>(\7—b)=RT



