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CHAPTER 1

INTRODUCTION

In these lectures I shall give some of the qualitative, geometric background
of Lie group theory that, is not readily found in a direct manner in the
standard treatises, e.g., Chevalley (1946), Helgason (1962), Jacobson
(1962), or Pontrjagin (1939). I shall assume that the readers are physicists
interested in the possible applications of Lie group theory to elementary-
particle theory, and that they have already made some sort of beginning
toward studying the subject. Most proofs will be omitted or sketched.
In general, there is a great need for expositions of modern mathematics for
physicists and engineers which only present the most important ideas.
This book was written in that spirit.

I shall emphasize the theory of homogeneous spaces of Lie groups
(particularly the theory of symmetric spaces), since apparently this is the
side of the theory that is least known to physicists, and there are many
ideas here that might be useful if they were better known. It is strongly
recommended that Helgason’s book, Differential Geometry and Symmelric
Spaces, be consulted for the details that I have omitted. The book by
Auslander and Mackenzie, Iniroduction lo Differentiable Manifolds, is
recommended as useful background for the more elementary general
background on manifolds and Lie groups. In addition, much of the
“fine structure” of Lie group theory, particularly that which involves
topology and the classification of semisimple Lie algebras, will be omitted.

On the other hand, I have refrained from trying to make this report
more immedialely accessible to physicists, by using the primitive, but in-
genious, notations that now seem to be standard in the physics literature.
As long as the only Lie groups that appeared in physics were of the very
simple type [e.g., SO(3), U(2)], mathematicians could not really complain
too strongly; however, it has been found in mathematics that the more
abstract coordinate and basis-free methods developed in the last twenty
years are very powerful when dealing with the more complicated Lie
groups that seem to be creeping into physics [e.g., SU(3) and SU(6)], and
physicists who want to push on in these directions will find themselves
needlessly wasting much time and effort if they do not learn the “modern”
tricks.
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2 Lie Groups for Physicists

I shall concentrate then on those general principles of “geometric” Lie
group theory that I believe to be relevant to physics, rather than attempt-
ing to duplicate the material that is now traditional in expositions of
Lie groups for physicists. For example, the expositions by Behrends et al.
(1962), Boerner (1963), Dynkin (1950), Hamermesh (1962), Mathews and
Walker (1964), Racah (1951), Salam (1963), and Wightman (1960) can
be recommended to the physicist reader as background. As a geometer,
I have a strong preference for coordinate-free methods. While the tech-
nicalities of manifold theory will be used as little as possible, the reader
should at least be familiar with the theory of linear vector spaces as it is
used in recent mathematical literature, i.e., in a way independent of bases,
and with emphasis on “mapping” ideas. It will be assumed that the
reader is familiar with the tensor product, and with such basic ideas as
“invariant subgroup,” ‘“Lie algebra,” etc. For example, the book by
Kastler (1961) will be useful to physicists as a bridge between the physicist’s
and mathematician’s versions of linear algebras.

It is a great pleasure to express my thanks to the many people who have
helped me in this interdisciplinary endeavor. My conversations with
L. Brown, N. Burgoyne, J. Cook, Y. Dothan, M. Gell-Mann, M. Hamer-
mesh, W. McGlinn, L. Michel, J. Moyal, Y. Ne’eman, and B. Sakita have
been particularly helpful. I am indebted to W. Givens, W. Miller, and
R. Sachs, who arranged on short notice my stay in the uniquely stimulating
environment of Argonne National Laboratory. Doris Haight has been a
great help as typist. Some of the preliminary work on this material was
done under grant from the Mathematics Division of the Air Force Office
of Scientific Research. The work was performed in part under the aus-
pices of the U.S. Atomic Energy Commission.



CHAPTER 2

LIE GROUPS AS
TRANSFORMATION GROUPS

Groups first arose as transformation groups on spaces. If M is a space,
a transformation of a space, denoted, say, by g, is a one-to-one map of M
onto itself. If p is a point of M, gp will denote the transform of p by g.
Two such maps, say g; and g», can be composed, to obtain the product gig.:

(9192)p = 91(g2p)-

This product, together with the inverse g~! (i.e., g~'p is that point ¢ such
that gq = p), give a group structure to the set of transformations. Of
course, groups can also be considered as abstract objects, denoted by
such letters as G, H, L, etc. Exhibiting such a group as a set of trans-
formations of M, with the “abstract’ group operations agreeing with the
“geometric”’ operations on transformations, defines G as a transformation
group on M. Another way of putting this is to say that exhibiting G on
a transformation group on M amounts to exhibiting a map GX M — M
satisfying an obvious set of conditions. [The image of (g, p) € GX M is
just gp, the transform of p by g.]

We shall be interested in the cases where G is a Lie group, M is a
differentiable manifold, and the action of G on M is given in local coordi-
nates by differentiable functions. (To define a Lie group one must impose
on an abstract group the condition that it also is a differentiable manifold,
and that the group operations are differentiable in the local coordinates.)

There are a series of basic definitions associated with such a group action
on M.

1. Let p be a point of M. The set of ¢ € G that leave p fixed, i.e.,
satisfy gp = p, forms a subgroup of G, called the.isolropy group of G at p,
denoted by G>=.

2. The set of points of M that can be reached by applying elements of
G to a single point p € M is called the orbit of G at p, denoted by Gp.

G acls transitively on M (or M is a homogeneous space of G) if Gp = M
for at least one p € M. (It follows then that this is so for every point
of M.) Clearly, G acts transitively on every orbit.

3



4 Lie Groups for Physicists

If G acts transitively on M, M can essentially be reconstructed knowing
G and G?, for one point p in M. In general, if H is a subgroup of a group G,
we can construct the cosef space G/H. An element of G/H is a subset of
G of the form gH, for one g°¢ G. G can be made to act as a group of
transformations on G/H: g, applied to the coset gH is by definition the
coset gogH. Note now that M = Gp can be identified with G/G?: Since
gG?p = gp, the map G(p) — M “passes to the quotient” to define a map
'G/G? — M that, it is readily verified, is one-to-one and onto.

Hence the study of homogeneous spaces can, in principle, be reduced
to the study of coset spaces G/H, where H is a subgroup of G, hence to
the study of pairs (G, H) consisting of a Lie group G and subgroup H. In
turn, many of the properties of such pairs can be deduced from algebraic
properties of pairs (G, H) consisting of a Lie algebra G and subalgebra H.
Finally, note that the identification of M with G/G? really does not depend
on the point p € M chosen: If ¢ is another point of M, and if G acts
transitively, there is a ¢ € G with gp = ¢. Then G? = gGrg~!; ie.,G is a
conjugate subgroup of G. It is clear that the coset spaces corresponding
to conjugate subgroups are basically the same.

Ezample 1

M = Minkowski space, = G/H, where G = the Poincaré group (i.e., the
inhomogeneous Lorentz group); H = the homogeneous Lorentz group.

Recall the notation for the “classical groups.” GL(n, R) and GL(n, C)
are the groups of invertible n X n real and complex matrices. SL(n, R)
and SL(n, C) are those (invariant) subgroups consisting of elements of
GL(n, R) and SL(n, C) which have determinant 1. The Lie algebra (see
Chapter 3 for its definition) of GL(n, R) and GL(n, C) consists of all n X n
real and complex matrices. The Jacobi bracket relation for matrices,
say a and (3, is the commutator [e, 8] = a8 — Ba.  O(n, R) is the subgroup
of GL(n, R) consisting of orthogonal matrices. O(n, C) is a subgroup of
GL(n, C) in a similar way. SO(n, R) = SL(n, R) N\ O(n, R), the rotation
group. SO(n, C) = SL(n, C) N O, C). Sp(n, C) is  the subgroup of
SL(2n, C) that leaves invariant a given nondegenerate skew-symmetric
form. U(n) is the unitary subgroup of GL(n, C). SU(n) = Un) N
SL(n, C). All these groups, except O(n, R), are connected. All are semi-
simple, except GL(n, R) and GL(n, C), and U(n).

Example 2

P,(R) and P,(C), real and complex projective spaces of n real and
complex (respectively) dimensions. (n complex dimensions means 2n real
dimensions.) For example, P,(C) is constructed as follows: Start with



Lie Groups as Transformation Groups 5

C+, the space of (n+ 1) complex variables. A point of C**! is then
an (n+ 1) tuple z = (z3, . . . , Z»41) Of complex numbers.

Set up an equivalence relation on the nonzero elements of C*+! in the
following way. Two vectors z and :’ are equivalent if there is a nonzero
scalar A\ such that z = Az". A “point” of P,(C) is then an equivalence
class of such vectors. [If C*!is regarded more abstractly as a complex
vector space, a “point” of P,(C) can be regarded as a one-dimensional
linear subspace of C**..] A function z — f(z) (not necessarily holomorphic,
of course) on C*! can then be regarded as a function on P,(C) if it is
homogeneous of zeroth degree, i.e., if f(\z) = f(z). The coordinate func-
tions zy, . . ., z,41 are not, of course; hence they are not actually functions
on P,(C). In classical language, they are “homogeneous coordinates”
for P,(C). However, genuine functions on P,(C) can be constructed by
taking rational functions in zy, . .., z,41. For example,

yi=7  @<i<nt)

These are “inhomogeneous coordinates’ for P,(C). Note that they are
not defined everywhere on P,(C), but just on the set of points arising
from vectors z whose first component is nonzero (in classical language, on
the complement of the ‘“hyperplane at infinity” defined by z, = 0).
There is a topological reason for this: P,(C) is a compact topological space,
hence does not have a coordinate system that is defined everywhere. On
the other hand, functions such as

225
Jii(2) = Ze
are defined everywhere on P,(C). (Let indices i, j, &, . . . have the range
from 1 to n+ 1, and adopt the summation convention.) Note however
that they are not holomorphic (*‘complex analytic’’) functions of :z.
Now we can exhibit P,(C) as a homogeneous space of GL(n + 1, C).
Consider an element « of GL(n + 1, C) as an (n + 1 X n + 1) matrix («;;).
Let « act on C*t! by the rule

(@2); = aiijz;.

Note that if z’ = Az, az’ = Aaz also; hence a “passes to the quotient”
to define a transformation on P,(C). We leave it to the reader to show
that the action of GL(n + 1, C) is transitive on P,(C); i.e., any pair of
one-dimensional subspaces of C"t! can be mapped into each other by a
suitably chosen linear transformation.

Let us determine the isotropy subgroup H of GL(n+ 1, C) at a point
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P.(C), for example, the point determined by the vector z* = (1,0, ..., 0).
The matrix « leaves this point fixed if there is a scalar \ with

az® = \z29;

aijzj') = kz?i
or

a;=0 for¢ > 1,
A1 = /\.

Thus, H is the subgroup of GL(n + 1, C) determined by the condition
ain =0 for i > 1.

GL(n+ 1, C) does not act “effectively” on P,(C). Let us pause to
explain what this means in general. Consider a group G that acts as a
transformation group on a space M. The set of g € G which acts as the
identity transformation, i.e., such that

gp=p forall p € M,

forms a subgroup L of G. In fact, it is an invariant subgroup of G. For
any other g, € G,

(90995 ") (P) = 90995'P = gogs'P = P;

i.e., goggys* € L. The quotient group G/L can then be formed. Since L
acts as the identity on A, the action of G “passes to the quotient” to
define an action of G/L on M. G/L acts effeclively on M; i.e., each element
of G/L that is not the identity element of the abstract group does not
act as the identity on M.

Return now to the case M = P,(C). « € GL(n + 1, C) acts as the iden-
tity if

ai;iz; = Nz2)z; for all z € C+1,
This forces
ai; = Nyj

i.e., o is a diagonal matrix. Another way of looking at it is to note that
the diagonal matrices form the center of GL(n + 1, C); i.e.,

The quotient of GL(n + 1, C) by its center acts on P,(C). The
quotient group is sometimes called the projective or collineation
group, since it acts cffectively on P,(C).



Lie Groups as Transformation Groups 7

We can also consider SL(n + 1, C), the group of matrices of determinant 1.
It, too, acts transitively on P,(C). Its center is now discrete, in fact,
forms the multiples \d;; of the identity matrix, with A**' =1, Thus,
the center is the cyclic group with n + 1 elements, sometimes denoted by
Zn11. The quotient SL(n + 1, C)/Z,+: can then also be identified with the
projective group which acts effectively on P,(C). The subgroup SU(n + 1)
also acts transitively on P,(C). The center of SL(n + 1, C), namely Z,.4,
belongs to SU(n + 1). For example, it is an interesting fact that it is
precisely the representations of SU(3)/Z; that occur as symmetries of the
strongly interacting particles. The subgroup of SU(n + 1) that leaves
a point P,(C) fixed can readily be identified with U(n), so that SU(n + 1)/
U(n) = P,(C).

P,(R) can be dealt with in a similar way by using the real instead of
the complex numbers in these constructions.

Ezample 3

S., the n-sphere, = SO(n + 1, R)/SO(n, R). Here we start off with
R+, the space of (n + 1)-triples of real numbers x = (23, . .., Z,11). S, is
the set of 2’s with &2+ - - - + z%,; = 1. The matrix groups SO(n + 1, R)
and O(n + 1, R) both act transitively on S,. The computation of the
isotropy subgroup at one point is left to the reader.



CHAPTER 3

LIE ALGEBRAS AND THE
CORRESPONDENCE BETWEEN
SUBGROUPS AND SUBALGEBRAS

Let G be a Lie group. A one-parameler subgroup of G is a mapping
t — g(f) of the real numbers in G that is a homomorphism between the
additive group of the real numbers and G; i.e., it satisfies

gl + &) = g(h)g(ts).

Let p be a linear representation of G by linear automorphisms of a (finite-
dimensional) vector space V. Thus, for each g € G, p(g) is an invertible
linear transformation V' — V; the rules to be satisfied can be summed up
by saying that the map G X V — V, defined by (g, v) — p(g)(v), defines
G as a transformation group on V. Alternatively, of course, one may say
that p is a homomorphism from G to the group of linear automorphisms
of V. To each one-parameter group ¢{ — g(f), we have a one-parameter
group ¢ — p(g(l)) of linear transformations of V, for which one can find
an “infinitesimal generator” «, which is also a linear transformation:
V — V (not necessarily invertible, however).

On the one hand, & can be obtained from the one-parameter group:
Forve V,

d
a) = 5 pED)®)
On the other hand, the one-parameter group can be reconstructed from «:

For v € V, p(g(f))(v) is the solution of dv/dt = aw, with v(0) = v, or, ex-
plicitly,

t=0

2\ (o)
pla0)) = explian = 3 L9 ).
J—0
Thus, we have set up a correspondence between the set of one-parameter
subgroups of G and certain linear transformations of a vector space. The
linear transformations of a vector space V form a vector space; oy and
a; can be added:

(a1 + a2)(v) = au(v) + a2(v) forv € V.
8



