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SIMULTANEOUS
O LINEAR
EQUATIONS

After reaching the end of this chapter you should be able to:-
Solve a pair of simultaneous equations by
substitution and by elimination.

SOLUTION OF SIMULTANEOUS LINEAR
EQUATIONS

Consider the equations:
Ix+2y=17
4x-+y =6

The unknown quantities x and y appear in both equations. To solve the
equations we have to find values of x and p so that both equations are
satisfied. Such equations are called simultaneous equations.

Three methods are available for solving simultaneous equations.

1. Substitution Method

EXAMPLE 1

Solve the equations:
2x+y =10 (0

3x+2y =17 2
We can write equation (1) above as:
y = 10—2x 3)
and, substituting this value of y into equation (2), we have:
3x+2(10—2x) = 17
and we now have an equation with x the only unknown.
3x+20—4x = 17

N=3
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Substituting this value for x in equation (3),
y = 10-2(3)
y=4
The solutions are therefore
x=3 and y=4

The solutions should always be checked by substituting the values found
into each of the original equations:

Equation (1) has:

L.H.S. = 2(3)+4 = 10 = R.H.S.
and equation (2) has:

L.H.S. = 3(3)+24) = 17 = R.H.S.

EXAMPLE 2

Solve the equations:

2x+3y =16 (1)
3x+2y =14 )
From equation (1):
3y =16—2x
16 —2x
y=-—"3 3
Substituting this value in equation (2),
2(16—2
3»+JJ%—52=14

and, multiplying through by 3, we get:

9x+2(16 —2x) = 42
from which Xi=2
Substituting this value for x in equation (3), we have:

C16-2(2) 164
3 3

=4
The solutions are therefore:

x=2 and y=4
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Checking these values by substituting into the original equations we have:
Equation (1) has:

L.H.S. =2(2)+34) = 16 = R.H.S.
Equation (2) has:

L.H.S. = 3(2)+2(4) = 14 = R.H.S.

2. Elimination Method

This method is most generally used in solving equations which contain the
first power only of the unknown quantities.

EXAMPLE 3
Solve the equations:
3x+4y = 11 0))
x+Ty =15 2

If we multiply equation (2) by 3 we shall have the same coefficient of x
in each of the equations:

3x+2ly =45 (€)
We can now eliminate x by subtracting equation (1) from equation (3).
(B3x+21y)—(3x+4y) = 45—11
17y = 34
y=2
To find x we may substitute in either of original equations.
Substituting in equation (1):
3x+4(2) =11
x=1
Therefore the solutions are:
x=1 and y=2

To check these values substitute them in equation (2). (There would be no
point in substituting them in equation (1) for this was used in finding x
from the y value.) Substituting in equation (2),

L.H.S. = 1+7(2) = 15 = R.H.S.
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EXAMPLE 4

Solve the equations:
S5x+3y =29 (1)
4x+Ty = 37 (#))

The same coefficient of x can be obtained if equation (1) is multiplied by 4
and equation (2) by 5. As before, we may then subtract and x will disappear.

Multiplying equation (1) by 4,

20x+12y = 116 (3)
Multiplying equation (2) by 5,

20x+35y = 185 “)
Subtracting equation (3) from equation (4),

(35—-12)y = 185—116

y=3
Substituting in equation (1),
5x+33) =29
x=4

Therefore the solutions are:
x=4 and y=3
A check on these values is made by substituting them into equation (2):
L.H.S. = 4(4)473) = 37 = R.H.S.

Frequently, in practice, the coefficients of the unknowns are not whole
numbers. The same methods apply but care must be taken with the
arithmetic.

EXAMPLE 5

Solve the equations:
3.175x+4-0.238y = 6.966 (1
2.873x+4.192y = 11.804 (2)

To eliminate, say, x we must arrange for x to have the same coefficient in
both equations. To achieve this we multiply equation (1) by the coefficient
of x in equation (2) and then equation (2) by the coefficient of x in
equation (1).
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Multiplying equation (1) by 2.873,
9.122x+0.683 8y = 20.02
Multiplying equation (2) by 3.175,
9.122x+13.31y = 37.48
Subtracting equation (3) from equation (4),
12.63y = 17.46
y = 1.383
Substituting this value in equation (1),
3.175x+0.238(1.383) = 6.966

 6.966—0.3297
a 3.175

x = 2.089
Therefore the solutions are:
x =2.089 and y = 1.383

3)

@)

A check on these values may be made by substituting them into equation (2):

L.H.S. = 2.873(2.089)+4.192(1.383) = 11.804 = R.H.S.

EXAMPLE 6
Solve the equations:
2x y 7
3 4 12
3 23
475 10

()

()]

In this example it is best to clear each equation of fractions before

attempting to solve simultaneously.
Multiplying equation (1) by 12,
8x—-3y=17

Multiplying equation (2) by 20,

15x—8y =6
We can now proceed in the usual way.
Multiplying equation (4) by 8,

120x—64y = 48

3

“

&)
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Multiplying equation (3) by 15,
120x—45y = 105 6)
Subtracting equation (5) from equation (6),
—45y—(—64)y = 105—-48

y=3
Substituting in equation (3),
8x-33) =7
x=2
Hence solution is:
=2 and y=3

A check on these values will necessitate substitution into both equations (1)
and (2) since both were modified before any elimination took place:

Equation (1) has:

2 3 17
= ————=—=RH.S
L.H.S 3 1-12 R.H
Equation (2) has:
Lay— 2 AN 2 g
4 5 10

3. Graphical Method

Simultaneous linear equations may be solved by plotting the graphs of the
two equations and finding where they intersect. This method is explained
fully in Chapter 2.

PROBLEMS INVOLVING SIMULTANEOUS
EQUATIONS

In problems which involve two unknowns it is necessary to form two
separate equations from the given data and then to solve these as shown
above.

EXAMPLE 7

In a certain lifting machine it is found that the effort (£) and the load (W)
which is being raised are connected by the equation E = aW--b. An effort
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of 3.7 units raises a load of 10 units whilst an effort of 7.2 units raises a
load of 20 units. Find the values of the constants @ and b and hence find
the effort needed to lift a load of 12 units.

Substituting E = 3.7 and W = 10 into the given equation, we have

3.7 = 10a+b (1)
Substituting £ = 7.2 and W = 20 into the given equation, we have
7.2 = 20a-+b )
Subtracting equation (1) from equation (2),
3.5 = 10a
a=0.35

Substituting for @ in equation (1),
3.7 =10x%0.35+b

3.7=35+b
3.7-35=5
b=0.2
The given equation therefore becomes:
E=0.35Ww+0.2
When W =12,
then E = 0.35x12+0.2 = 4.2+0.2 = 4.4 units

Hence an effort of 4.4 units is needed to raise a load of 12 units.

EXAMPLE 8

The currents /; and 7, in a certain circuit are connected by the following
equations:

0.41,—-0.31, =3 (1)
1.1,—-0.2I, =5 2)
Find 7; and 1,.
Multiplying equation (1) by 1.1, we get
0.447,—0.337, = 3.3 (3)
Multiplying equation (2) by 0.4, we get
0.441,—0.087, = 2.0 “
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Subtracting equation (4) from equation (3),

0I5 =13
1= L3
—0.25

I,= —52

Substituting for 7, in equation (1), we get
04,—03%x(—-52)=3

0.47,+1.56 = 3
041, =3-1.56
045, = 1.44
L L
Y04
L, =336
EXAMPLE 9
Two equations connecting resistances R; and R, in an electric circuit are:
3 4
—4—= 1.6
5 8
—+— =30
Rl RZ
Find the values of R, and R,.
1 1
Let x = — and y = —, then
R, R,
3x+4y = 1.6 (D)
Sx+8y = 3.0 )
Multiplying (1) by 2 6x+8y = 3.2 3)
Subtracting (2) from (3), X =: 0.2
Substituting for x in (2), 5%0.248y = 3.0
y =10.25
R; = b, 5
02
and Ry = L <4
’ £025
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EXAMPLE 10

A heating installation for one house consists of 5 radiators and 4 convector
heaters and the cost of the installation is £270. In a second house 6
radiators and 7 convector heaters are used and the cost of this installation
is £402. In each house the installation costs are £50. Find the cost of a
radiator and the cost of a convector heater.

For the first house the cost of the hardware is:
£270— £50 = £220

For the second house the cost of the hardware is:
£402—£50 = £352

Let £x be the cost of a radiator and £y the cost of a convector heater.

For the first house, Sx+4y = 220 €))
For the second house, 6x+7y = 352 )
Multiplying (1) by 6: 30x-+24y = 1320, and 3)
Multiplying (2) by 5: 30x+35y = 1760 4)
Subtracting equation (3) from equation (4) then
11y = 440
y =140

and substituting for y = 40 in equation (1) then
S5x-+4(40) = 220
5x = 60
x=12

Therefore the cost of a radiator is £12 and the cost of a convector heater
is £40.

Exercise 1

Solve the following simultaneous equations:

D 3x+2y=14 xy 3
2x+5y = 24 3 47573
2x+3y =19

x y 13

4 e, Jf oy ey 22

2) Ix—3y= -2 ) 273" 6
8x—2y =2 2x y 5

7 4 14



