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Preface

The fractional Fourier transform has received considerable interest since the early
nineties, finding itself a place in standard texts and handbooks such as Bracewell 1999
and The Transforms and Applications Handbook 2000. Our primary purpose in writing
this book has been to provide a widely accessible account of the transform covering
both theory and applications.

Little need be said of the importance and ubiquity of the ordinary Fourier transform
and frequency-domain concepts and techniques in many diverse areas of science and
engineering. As a generalization of the ordinary Fourier transform, the fractional
Fourier transform is only richer in theory and more flexible in applications—but not
more costly in implementation. Therefore the transform is likely to have something
to offer in every area in which Fourier transforms and related concepts are used. So
far applications of the transform have been studied mostly in the areas of optics and
wave propagation, and signal analysis and processing. These applications are discussed
extensively in this book. However, we expect the transform to find applications in many
other areas, and hope that this book will contribute to this end.

This text should primarily be of interest to graduate students, academics, and
researchers in branches of mathematics, science, and engineering where Fourier
transforms and related concepts are used. A partial list of these areas is operator
theory, harmonic analysis and integral transforms, linear algebra, group representation
theory, phase-space methods, time- and space-frequency representations, transform
theory and techniques, signal analysis and processing, wave propagation, and many
areas of optics. We have made an effort to make the book accessible to such a
cross-disciplinary audience, entailing a number of compromises. The emphasis is
mostly on elucidating the basic concepts from different perspectives and showing as
many of the relationships between them as possible. Although most arguments and
results are analytical in nature, we did not hesitate to employ suggestive physical
arguments where we felt this was appropriate. Mathematical rigor is delegated to the
references, as are most experimental and practical considerations. Discussion of optics
has been strictly segregated so that readers with no interest in optics can simply ignore
chapters 7. 8, and 9.

The fractional Fourier transform is intimately related to several indispensable
concepts appearing in diverse areas. We have tried to present the transform in a broad
context, showing its relationship to as many of these different concepts as possible.
This has required the inclusion of a considerable amount of background and review
material to ensure that the book is reasonably self-contained. Nevertheless, we have
assumed the reader has at least elementary undergraduate-level exposure to signals
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and systems and linear algebra. A similar exposure to optics is assumed for those
wishing to study the chapters on optics. For instance, we define the ordinary Fourier
transform and list its properties, but we do not attempt to develop the insight and
intuition that would constitute the focus of an elementary text. Specific suggestions
for background reading are provided in the introductory chapter, as well as at the end
of certain chapters.

The background material contained in chapters 2 and 7, and especially chapters 3
and 8, is an important feature of the book which we hope readers not very familiar
with these topics will find useful in their own right. In these chapters, we occasionally
go beyond providing background and preliminary material, to present a self-complete
exposition of certain topics which have been neglected in other texts. As such, these
chapters may be useful as primary or supplementary material for a variety of different
courses. Substantial parts of this book have been used as the primary material for
courses on time-frequency analysis, advanced signal processing, and as the theoretical
core material of a course on optical information processing at Bilkent University.
The material may be especially useful for courses in advanced Fourier optics or
information optics emphasizing phase-space concepts and the Wigner distribution,
or as supplementary material for introductory courses in these areas. The book can
also form the basis of a specialized course on the fractional Fourier transform or the
fractional Fourier transform and time-frequency representations, and their applications
in optics and/or signal processing. However, depending on the emphasis of the course.
and especially if optics is excluded, it may be useful to use the book together with
one of the excellent tutorials or books on time-frequency representations (see the end
of chapter 3).

A detailed overview of the book, including the relationships of the chapters to each
other and suggestions for using the book for self-study, is presented in section 1.3.
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