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Preface

Like a storm that has built energy out at sea, the first waves of a new era of comput-
ing have begun to pound the “beaches” of software development. The forces behind
this storm have been building for some time and as the waves make land, a somewhat -
unsuspecting industry braces itself and prepares to survive the fury.

Although this is a rather dramatic way to characterize the current state of affairs
in the computer industry, it is nonetheless accurate. Never before has so much tech-
nology been made available to such a large community of developers in such an inte-
grated and distributed fashion. Just as someone standing on a beach can tell there’s a
storm approaching, as a developer you can recognize that a change in the industry is
underway. Undoubtedly, you're trying to figure out what all this means and how best
to prepare yourself. This book is meant to provide a level of understanding that will
prepare you not only to survive in this new era of development but to actually thrive.
The information here will help you understand the .NET technologies and show you
how they all fit together in a way that will enable you to effectively build next-
generation solutions. This book conveys these ideas through the development of sev-
eral NET applications using C#.

Applied NET offers a people-oriented perspective on the new forces changing soft-
ware development and a set of principles that can be applied to building effective
Internet software. We use the term people oriented to describe the new wave of software
that is approaching as it captures the dynamism that stirred up the NET storm. The
origin of this term dates back several years to a book authored by Ronan in 1998—
Inside Microsoft Windows NT Internet Development. Part I of that book introduced the
new paradigm of people-oriented programming and the concepts embodied within
this type of software. The second part of the book explained how earlier technologies
could be used to develop systems adhering to these principles.

The .NET technologies take such a significant step closer to the goals and ideals
first presented in that earlier work that our choice of a subtitle for this book was nat-
ural—Developing People-Oriented Software Using C#. This serves our desire to present
a perspective on how .NET can be applied to build a new and very exciting class of
software. Therefore, although this book applies .NET technology, the objective of that
application is to create something more transcendent, which is formally referred to as
people-oriented software.



Preface

In the period of time since Inside Microsoft Windows NT Internet Development was
published, the ideas it presented have matured and sharpened as a result of various
discussions among the authors of this current book. Some of those discussions pro-
duced more heat than light, but in the end we are all in agreement that the principles
laid out in this book are the right ones and that the future will no doubt be people ori-
ented. This became even more evident just recently when Microsoft announced their
HailStorm initiative. Any doubts about the people-oriented perspective ended with
that announcement. We are entering a new era in which people will not have to be
computer oriented to use software—software will be oriented toward how people
actually live. Software will be running many everyday devices, and all of them will
be connected in unimaginable ways. The core theme running through it all will be how
software is embedded within society and oriented to the people who will use it.

From a people-oriented perspective, NET is a means to an end rather than an end
in itself. No doubt, other books will go into more detail in certain areas of .NET than
this one does, and they will be very useful in that regard. This book, however, tries to
strike a balance between theory and practice so that we can show you not only how
to apply .NET but also what you can achieve as a result of that application. As useful
as we think the perspectives and principles contained in Applied .NET are, we just
don’t stop there. The book will actually show you how to apply what you've learned
by building realistic NET applications—it takes a practical look forward.
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Chapter

People-Oriented Software

The Internet has brought software to the people. For the first time in history, ordinary
people all over the world are using software to connect to each other. This trend will
surely continue as Internet connectivity enters the realms of television, radio, tele-
phone, personal digital assistant (PDA) technology, and the automobile. In addition,
people’s lives are becoming the primary focus of software—either directly through
human interaction via Web-user interfaces or indirectly through business-to-business
(B2B) communication targeted at serving human needs. The increasing connectivity
of the populace through software combined with software’s more specialized focus on
people is revolutionizing software design.

The software of the past focused on modeling the operation of things, which gave
rise to the object-oriented movement. Although today people could be viewed as just
another collection of objects in an object-oriented world, this approach would be
impractical and likely fail. There is simply no plausible way to model the dynamic
interactions and forces within our society using object-oriented design. Social inter-
action involves issues such as the use of freedom, multicultural preferences, mobility,
unpredictability, and geographical location, just to name a few. Simply put, society
cannot be adequately represented using the abstraction of an object model. The real
world of people is radically different from the world of things, as philosopher Karl
Wojtyla (better known as Pope John Paul II) pointed out years ago:

The world in which we live is composed of many objects . . . As an object, a man
is “somebody”—and this sets him apart from every other entity in the visible
world, which as an object is always only “something.” Implicit in this simple,



