Developig People-Oriented Software Using C#

- _ RONAN SORENSEN
- WW GEORGE SHEPHERD «
JOHN ROBERTS «

- Russ WILLIAMS ©

s

Applied .NET

Developing People-Oriented
Software Using C#

Ronan Sorensen
George Shepherd
John Roberts

vy Addison-Wesley

Boston San Francisco New York
London Toronto Sydney Tokyo Singapore Madrid
Mexico City Munich Paris Cape Town HongKong Montreal

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book and we were aware of
a trademark claim, the designations have been printed in initial capital letters or all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

Copyright © 2002 by Ronan Sorensen, George Shepherd, John Roberts, and Russ Williams

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher. Printed in the United
States of America. Published simultaneously in Canada.

Portions from Microsoft PressPass reprinted with permission from Microsoft Corporation.
Copyright © 2001 Microsoft Corporation. All rights reserved.

The publisher offers discounts on this book when ordered in quantity for special sales. For
more information, please contact: '

Pearson Education Corporate Sales Division
One Lake Street

Upper Saddle River, NJ 07458

(800) 382-3419
corpsales@pearsontechgroup.com

Visit us on the Web at www.awl.com/cseng/
Library of Congress Cataloging-in-Publication Data

Applied .NET : developing people-oriented software using C# / Ronan Sorensen . . . [et al.]
p. cm.
ISBN 0-201-73828-7 (alk. paper)
1. C# (Computer program language) 2. Application software—Development
L. Sorensen, Ronan

QA76.73.C154 A67 2002
005.2'762--dc21 2001045747

Text printed on recycled paper.
12345678910-CRS-0504 030201
First printing, October 2001

Preface

Like a storm that has built energy out at sea, the first waves of a new era of comput-
ing have begun to pound the “beaches” of software development. The forces behind
this storm have been building for some time and as the waves make land, a somewhat -
unsuspecting industry braces itself and prepares to survive the fury.

Although this is a rather dramatic way to characterize the current state of affairs
in the computer industry, it is nonetheless accurate. Never before has so much tech-
nology been made available to such a large community of developers in such an inte-
grated and distributed fashion. Just as someone standing on a beach can tell there’s a
storm approaching, as a developer you can recognize that a change in the industry is
underway. Undoubtedly, you're trying to figure out what all this means and how best
to prepare yourself. This book is meant to provide a level of understanding that will
prepare you not only to survive in this new era of development but to actually thrive.
The information here will help you understand the .NET technologies and show you
how they all fit together in a way that will enable you to effectively build next-
generation solutions. This book conveys these ideas through the development of sev-
eral NET applications using C#.

Applied NET offers a people-oriented perspective on the new forces changing soft-
ware development and a set of principles that can be applied to building effective
Internet software. We use the term people oriented to describe the new wave of software
that is approaching as it captures the dynamism that stirred up the NET storm. The
origin of this term dates back several years to a book authored by Ronan in 1998—
Inside Microsoft Windows NT Internet Development. Part I of that book introduced the
new paradigm of people-oriented programming and the concepts embodied within
this type of software. The second part of the book explained how earlier technologies
could be used to develop systems adhering to these principles.

The .NET technologies take such a significant step closer to the goals and ideals
first presented in that earlier work that our choice of a subtitle for this book was nat-
ural—Developing People-Oriented Software Using C#. This serves our desire to present
a perspective on how .NET can be applied to build a new and very exciting class of
software. Therefore, although this book applies .NET technology, the objective of that
application is to create something more transcendent, which is formally referred to as
people-oriented software.

Preface

In the period of time since Inside Microsoft Windows NT Internet Development was
published, the ideas it presented have matured and sharpened as a result of various
discussions among the authors of this current book. Some of those discussions pro-
duced more heat than light, but in the end we are all in agreement that the principles
laid out in this book are the right ones and that the future will no doubt be people ori-
ented. This became even more evident just recently when Microsoft announced their
HailStorm initiative. Any doubts about the people-oriented perspective ended with
that announcement. We are entering a new era in which people will not have to be
computer oriented to use software—software will be oriented toward how people
actually live. Software will be running many everyday devices, and all of them will
be connected in unimaginable ways. The core theme running through it all will be how
software is embedded within society and oriented to the people who will use it.

From a people-oriented perspective, NET is a means to an end rather than an end
in itself. No doubt, other books will go into more detail in certain areas of .NET than
this one does, and they will be very useful in that regard. This book, however, tries to
strike a balance between theory and practice so that we can show you not only how
to apply .NET but also what you can achieve as a result of that application. As useful
as we think the perspectives and principles contained in Applied .NET are, we just
don’t stop there. The book will actually show you how to apply what you've learned
by building realistic NET applications—it takes a practical look forward.

Acknowledgments

The authors, collectively, would like to thank the following people:

* The Addison-Wesley team: Kristin Erickson, Curt Johnson, Chris Kief,
Chanda Leary-Coutu, Marilyn Rash, Cathy Comer, Dianne Wood, Karin
Hansen, and Mark Bergeron of Publishers’ Design; and a special thanks to
Stephane Thomas, our fearless editor.

e All our colleagues at Plural for their encouragement, and special thanks to
James Watkins and Connie Hughes who assisted with the promotion of this
book.

* Miki Bell who provided some of the artwork.

e Sanjay Parthasarathy, Nelson Rossa, Connie Sullivan, and Rodney Miller
from Microsoft for their assistance and comments.

* Rob Howard, John McGuire, Greg Hack, Daryl Richter, Don Browning,
Maxim Loukianov, and Christophe Nasarre for their technical reviews.

In addition we include the following individual acknowledgments.

First and foremost I would like to thank my wife Irene and my three daughters Mary,
Catherine, and Sophia for allowing me to write another book. This time they knew
what to expect and so [am particularly grateful that they continue to put up with my
ideas and encourage me to write about them. I would also like to thank my extended
family in Ireland, America, and Italy from whom I have received faith, hope, and love.
Finally, I would like to thank my fellow authors George, John, and Russ for their
friendship and for the privilege of writing this book with them.

RS.

I express my most grateful appreciation to my family, Sandy Daston and Ted Shep-
herd, for being supportive and gracious while I toiled away on another book. Thanks
also to DevelopMentor for being a great training and thinking place for developers.
Thanks to Patrick Shepherd for being a great sounding board, participating on the
other side of the modern software fence (I kneel toward Redmond while he kneels
toward San Jose). Finally, great thanks are due to Ronan Sorensen, John Roberts, and
Russ Williams without whose efforts this book would not have been possible.

G.S.

xvii

xviii

Acknowledgments

I would like to thank Pete Nash, Mike Cabrera, and Jason Cuplin for their assistance
and support. I thank my fellow authors, whom I have had the distinct pleasure of
knowing and working with for years. I thank Ronan Sorensen for creating opportu-
nities over the last four years for many fine adventures in software development and
publication, including this one. Thanks to Russ Williams for being a continual source
of encouragement and inspiration. Thanks to George Shepherd for encouraging me to
write back in the early nineties. Working with you all has been the highlight of my
software career. Most of all, I wish to thank my wife Sue and my sons Daniel, Luke,

and Michael for their patient and understanding support.
JR.

I would like to start by thanking my family for the sacrifices they made while I
worked on this book. The time spent apart, the baseball games missed, the family gath-
erings I was unable to attend, and my fatigue and distractedness are just some of the
things that I have had to ask them to forgive. Ithank my children Ryan, Chase, and
McKenzie for their understanding and especially my wife Gina who was so support-
ive and provided me with much-needed encouragement at just the right time. They
are a gift from God for which I am eternally grateful. I would also like to thank my
co-authors, all of whom I have worked with and greatly admired. It has been an honor
to be a part of this book and I thank them for the quality of the contributions they have
made. Special thanks go to Ronan who was the point man on this effort. His hard
work, leadership, experience, insight, and instinct have shaped the book that you now
hold. Finally, I would like to thank my mother and father for their overconfidence in
me through the years. It was an offhand conversation with my father in which he
described his passion for programming that gave me the “bug,” as he called it, for
development. That event not only was the beginning of my chosen career, but it also
taught me that there really are no small conversations with kids. Mom and dad, I love
you both very much.

R.W.

While we have made every effort to avoid inaccuracies in this book, some may be
uncovered after it is printed. The Web site at http.//wuww.people-oriented.net will provide
contact details for reporting errors, and it will also list any corrections or updates.

Contents

Chapter 1 People-Oriented Software 1

The People-Oriented Paradigm 3
Universalization 4
Collaboration 5
Translation 5

A .NET Approach 6
.NET and Universalization 6
.NET and Collaboration 9
NET and Translation 12
System Interoperability 12
Contract Transformation 13
Conclusion 14

Chapter 2 Applied People-Oriented Software 15
People-Oriented Design 15
People-Types: “Design with Attitude” 16
Miner 17
Conductor 18
Linguist 18

Apply the Concepts: The InternetBaton Application 19
InternetBaton Application Features 19
Universalization Design: Mining the Runtime 21

Step 1: Sign-Up Page with Entry Validation 22

Step 2: Authentication and Authorization of Users 31

Step 3: Creation of New Baton Projects 37
Collaboration Design: Conducting the Orchestra 50

Step 4: Integration of InternetBaton with Other Web Services 54
Translation Design: A Linguist’s Delight 62

Step 5: Baton Synchronization 62

Step 6: Translation of Baton Metadata 66

Conclusion 69

vi Contents

Chapter3 Ci# 71
This Time, It's Personal 71
What Is C#? 73

What's So Special About C#? 74
Contemporary Perspective 74
It's Elegant 74
It's Object Oriented 75
It's Component Oriented 76
People-Oriented Perspective 77
C# and Universalization 77
C# and Collaboration 78
C# and Translation 79

Language Tour 80
The Basics 81
Program Structure 82
Namespaces 82
Assemblies 85
Variables 85
Expressions 88
Statements 91
Types 99
Value Types 99
Arrays Types 104
The object Type 106
Type Harmony 106
Classes 107
Inheritance 108
Members 109
Constructors 111
Destructors 113
Method and Method Overloading 114
Properties 116
Operators 117
Events 118
Indexers 120
Interfaces 122
Struct 125
Enum 126
Attributes 126
Exceptions 127

Conclusion 131

Contents

Chapter 4 Applied C# 131

ManagedSynergy 131

The Vision 132

The Functionality 132

The Design 133
Universalization 134
Collaboration 135
Translation 136

The Implementation 137
Opening an Existing Project 138
Creating a New Project 144
Adding a Project Item 150
Deleting a Project Item 154
Checking Out an Item 154
Viewing a Project Item 156
Checking In an Item 157
Reviewing an Item 160
Viewing an Item’s Properties 163
Invoking Administration Services 166
Dynamic Status Updates and Overnight Project Replication 166

Conclusion 169

Chapter 5 The Common Language Runtime 171

Windows and Components 173
Static Libraries 173
Dynamic Link Libraries 174
Implicit Linking 175
Explicit Linking 178
Upsides and Downsides 180
COM Tries to Fix It 180
COM Interfaces 181
COM Objects 185
COM Classes and Class Objects 186
Loading COM DLLs 187
IDL and Type Information 189
COM+ 190
What Is Right in COM? 191
What Is Wrong in COM? 191

Enter the Common Language Runtime 192
A Pervasive Type System 193
Types Are Fundamental 194

viii

Chapter 6

The Common Type System 195
Value Types 198
Value versus Reference 198

The Common Language Specification 198

Boxing 198
How Types Map to C# 198
Fields 199
Methods 199
Properties 199
Constructors 199
Assemblies 200
Assemblies and Modules 201
The Manifest 201
Private versus Public Assemblies 202
NET Versioning 203
Life within the CLR = 203
IL and JIT Compiling 204
.NET Garbage Collection 205
Finalization 206
Threading and the CLR 207
AppDomains 207
Interoperability 208
Platform/Invoke 208
TLBEXP and TLBIMP 208

Conclusion 209

Applied Runtime 211

Building Assemblies and Applications 211
The Command Line 211
Makefiles 213

Building Projects Using Visual Studio.NET 214

Examining the Manifest 215
Using ILDASM 215
Deployment and Versioning 218
Global Cache 221
Loading Assemblies and Versioning 223
More on Configuration Files 224
Garbage Collection 225
Effects 225
Deterministic Finalization 225

Contents

Contents

Chapter 7

Threading and the (LR 227
Creating Threads 227
Synchronization 229
Method-Level Locks 233

Interoperability 234
Platform/Invoke 234
Interoperating with COM 236

TLBIMP 236
TLBEXP 238

Windows Forms 241
The Forms Class 242
Handling Events 244
Graphics and Rendering 244

Conclusion 244

ASP.NET Up Close 247

Connective Tissue 248
The Road to ASP 248

Classic ASP versus ASP.NET 249
Deemphasizing ISAPI 250

ASP.NET: A Common Language Runtime Citizen 250
System.Web.UI.Page 251
System.Web.ULPage Fundamentals 255
ASP.NET Connection Object Model 257
Mixing ASP.NET and C# 258
ASP.NET Configuration Files 260

Web Forms 262

Custom Server-Side Controls 262
Extending the Browser 263
Server-Side Rendering 263
Control Life Cycle 264

Reasons to Use a Custom Server-Side Control 266

Web Services and ASP.NET 266
Web Methods and ASP.NET 267
Service Description Language and ASP.NET 267
Invoking Web Methods 268

Optimizations: ASP.NET Caching 268
Output Caching 268
Data Caching 268

ix

Chapter 8

Chapter 9

Contents

Managing Session State 269
Conclusion 270

Applied ASP.NET 271

User Interface Controls and the Web 271
HTML Controls 276
Web Controls 277

Web Forms and Visual Studio.NET 280

State Management for Web Applications 288
Application State 289
Session State 290
Session Configuration 291

Caching 293
Output Caching 293
Data Caching 294

HTTP Handlers 297
Conclusion 298

.NET Enterprise Servers 301

NET Enterprise Servers and People-Oriented Software 301
Universalization 301
Collaboration 301
Translation 302

Making It All Work Together 302
Point of Critical Solution Mass 303
NET Enterprise Servers and .NET 305

Role of XML 305

Foundation of Modern Interoperability 305
Structured Data Exchange 306
Business Document: XML 306
Business Document Specification: XML Schema 306
Document Translation: XSLT 306
Business Process: XLANG 307
Remote Object Invocation: SOAP 307
Asynchronous Messaging: SOAP 307
Description of Web Services: WSDL 307

Basics of XML 308
Design Goals 308

Contents

Documents 309
Elements 309
Attributes 310
Well-Formed Documents 310
Validity 310
Entity References 310
CDATA Sections 311
Processing Instructions 311
Comments 311
Namespaces 311
XPath 313
XLink 313
XPointer 313

Processing Models 314
Memory Tree 314
Event-Driven 314
Sequential Navigation Based 314

SOAP 315
Description and Purpose 315
Maximized Interoperability 315
Distributed Internet Computing RPC Mechanism 316
Document Messaging Mechanism 316
Operation Over the Internet through Firewalls 316
Definition 316
SOAP Envelope 316
SOAP Headers 316
SOAP Body 317
Call and Response Pattern 317
Data Types 317
Parts of the Implementation Problem 318
Microsoft Implementations 318
SOAP SDK 1.0 318
SOAP SDK 2.0 319
VisualStudio NET 319

BizTalk Server Essentials: Solving the EAI Problem and Beyond 319
BizTalk Orchestration 320
BizTalk Orchestration Designer 321
Business Process Design 322
Port Implementation 325
Schedule Compilation 327
Schedule Instantiation and Execution 327

xii

Contents

BizTalk Messaging 328
Abstractions 329
Submitting Documents 331
Channel Firing 333
Translation 333
Extensibility Framework: BizTalk Hooks 333
Custom Preprocessor 335
Custom Parser 335
Custom Functoid 335
Custom Serializer 336
Custom Transport 336
BizTalk Development Tools 337
BizTalk Editor 337
BizTalk Mapper 337
BizTalk Orchestration Designer 339
BizTalk Administration Tools 339
BizTalk Server Administration 339
BizTalk Messaging Manager 340
BizTalk Document Tracking 340
BizTalk Messaging Object Model 341
Creating a BizTalkConfig Object 341
Creating an Organization 342
Creating a Document 342
Creating a Port 342
Creating a Channel 343
Deleting an Object 343
Issues Addressed 343
Interoperability 343
Transport Protocols 344
Business Document Definitions (Schemas) 344
Business Document Validation 344
Business Process Definition 344
Business Document Translation 344
Integration with Legacy Systems, Internal Applications, and Cross
Enterprise Applications 344
Standards Support 345
Encryption and Secure Communications over the Internet 345
Management of the Execution of Business Processes 346
Long-Lived Transactions 346
Tracking of Business Transaction Status 347
Prepackaged Capabilities to Minimize Custom Development 347

Contents

Extensible Design 347
Architecture Issues with Current Implementation 347

Commerce Server Essentials 348
Commerce Server Architecture 348
Continuous Improvement Cycle 350
Business Processing Pipelines 350
Profile System 350
Targeting System 352
Product Catalog System 352
Business Analytics System 353
Solution Sites 354
Supplier Enablement Tool Kit 355
Integration Points 356
Internet Information Server to BizTalk Server Orchestration 356
Internet Information Server to BizTalk Server Messaging 356
From HTTP Request to BizTalk Messaging via Direct Integration 356
From HTTP Request to BizTalk Messaging via Message Queuing
Receive Function 357
From HTTP Request to BizTalk Messaging via File Receive Function 357
Commerce Server to BizTalk Server 359
Integration to BizTalk Server Messaging 359
Integration to BizTalk Server Orchestration 359

Conclusion 361

Chapter 10 Applied .NET Enterprise Servers: Order Fulfillment with
an Outside Vendor 363
Order Processing Pipeline 365
Business Process Definition 365
Port Implementations 366
Integration with Business-to-Consumer Site 373
Order Translation to Outside Vendor Format 374
Delivery to Outside Vendor’s BizTalk Server 375
Commerce Site Status Update and Consumer Notification 375
Outside Vendor BizTalk Processing 376

Ship Notice Handling 377
Charge Credit Card 377

Conclusion 378

Index 379

xifi

Chapter

People-Oriented Software

The Internet has brought software to the people. For the first time in history, ordinary
people all over the world are using software to connect to each other. This trend will
surely continue as Internet connectivity enters the realms of television, radio, tele-
phone, personal digital assistant (PDA) technology, and the automobile. In addition,
people’s lives are becoming the primary focus of software—either directly through
human interaction via Web-user interfaces or indirectly through business-to-business
(B2B) communication targeted at serving human needs. The increasing connectivity
of the populace through software combined with software’s more specialized focus on
people is revolutionizing software design.

The software of the past focused on modeling the operation of things, which gave
rise to the object-oriented movement. Although today people could be viewed as just
another collection of objects in an object-oriented world, this approach would be
impractical and likely fail. There is simply no plausible way to model the dynamic
interactions and forces within our society using object-oriented design. Social inter-
action involves issues such as the use of freedom, multicultural preferences, mobility,
unpredictability, and geographical location, just to name a few. Simply put, society
cannot be adequately represented using the abstraction of an object model. The real
world of people is radically different from the world of things, as philosopher Karl
Wojtyla (better known as Pope John Paul II) pointed out years ago:

The world in which we live is composed of many objects . . . As an object, a man
is “somebody”—and this sets him apart from every other entity in the visible
world, which as an object is always only “something.” Implicit in this simple,

