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PREFACE

A Symposium on Combinatorial Mathematics and Optimal Design was held at
Colorado State University (CSU), Fort Collins, Colorado, on June 5-9, 1978. The
symposium was international in scope. Both the speakers and the audience ranged
from all over the world.

The present volume contains the contributions of the invited speakers. The
papers are both of survey and research types.

This symposium was actually a “State of the Art” conference, and was similar
to the one held here in September, 1971. The purpose was to help disseminate
knowledge and stimulate research by bringing together top ranking workers from
diverse areas of the above fields. These include Foundations, Enumerative
Techniques, various branches of Graph Theory, Coding Theory, Combinatorial
Problems of Designs, Optimal Design Theory, Finite Geometries, Number
Theory, Combinatorial games, Computer problems, etc.

The conference was jointly sponsored by the U.S. Air Force Office of Scientific
Research, and the Office of Naval Research. Dr. I.N. Shimi, of the Air Force,
particularly helped in the same. On behalf of the Organizing Committee, the
participants, and the scientific community, I wish to express my deep appreciation
and gratitude to them.

The Organizing Committee of the Symposium consisted of Professors R.C.
Bcese (Colorado State University), Paul Erdés (Hungarian Academy of Sciences),
Frank Harary (University of Michigan), G.C. Rota (Massachusetts Institute of
Technology). Esther Seiden (Michigan State University), W.T. Tutte (University
of Waterloo), and myself. The presence of these people on the organizing
committee helped a great deal towards the success of the conference. I am deeply
grateful to each and every one of them for being on the committee, and for the
tremendous cooperation that I always received from them.

Professors Erdos, Harary, Rota and Tutte were particularly helpful in develop-
ing the program of the Conference. This time money was not available for
payment for overseas travel. However, these people, particularly Professor Erdos,
helped find many outstanding people from abroad who were planning to visit the
United States on their own. I am thankful to them for their help in this regard.
Several other distinguished foreign scientists were invited by me with the request
that they arrange for their overseas travel. I am happy that almost all of them had
success. Most sincere thanks go to these foreign governments and organizations
for their cooperation.

As is well known now, I have been passing through severe personal problems
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vi Preface

for the past 15 years, which finally culminated in the events during the last two
years. In this connection, a very difficult sequence of situations began just six
weeks before the Conference. During these times, the university authorities
(including Dr. Williams, Chairman of the Statistics Department, Dean Cook of
the College of Natural Sciences, Vice-Presidents Olson and Neidt, and President
Chamberlain) extended their understanding and support. Professor Bose informed
the other Organizing Committee members about me and they joined in. I am
extremely thankful to all of these people; without their encouragement the
Conference would not have been held.

Thanks also go to many local people for their help. Among these, particular
mention must be made of (i) the secretaries Waydene Casey and Joanne
Moynihan, (ii) my then student W. Ariyaratna, and (iii) my esteemed colleagues
Professors Manvel and Bose. Finally, to this list, must be added the name of Usha
Srivastava, now my sister-in-law. Along with me, Usha also was going through
agonies. In spite of this she helped me run things smoothly thus making a great
*(though indirect) contribution to the success of the Conference.

I am thankful to the authors for the many excellent papers in this volume, and
also to the referees for their help.

As in the earlier conferences, the various local arrangements were made by the
C.S.U. Department of Conferences and Institutes. This time, unfortunately, some
participants suffered inconveniences. I wish to apologize for the same.

1 am thankful to North Holland (particularly, the desk editor Aad Thoen) for
their promptness in handling the manuscripts, and producing this volume.

Last, but not the least, my thanks go to all the participants in the Symposium
for it was their participation which truly made it a success.

Jaya Srivastava
Symposium Director
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RESULTS AND PROBLEMS IN GALOIS GEOMETRY

Adriano BARLOTTI
University of Bologna, Bologna, Italy

1. Introduction

Galois geometry, in its broader sense, is the study of the nonlinear sets of points
“in finite spaces (including here also finite spaces over nonfield structures). Refer-
ences on the early history of Galois geometry can be found in [29]. In this survey
the main research areas in which Galois geometry may be divided were clearly
indicated:

(a) To offer pure geometric interpretations of algebraxc and number theoretic
properties.

(b) To give estimates for the number of points lying on certain algebraic
varieties. Here the solution may follow from algebraic results or from purely
combinatorial and geometric methods.

(c) To present graphic characterizations of algebraic varieties.

(d) To study (k; n)-arcs, (k; n)-caps and more generally (k; n)-sets. Of particu-
lar interest in this study is the “packing problem”, i.e. the problem of finding in a
given space the maximum number of points which can belong to'a (k; n)-set, for a
given value of n.

In the last 20 years the study of Galois geometry has developed in a quite
remarkable way. In 1974 in some lectures we presented a brief survey on this field
(see [2, n. 3]). We shall exhibit here some of the progress done since 1974,
particularly in the above section (d), and some (old and ‘new) open problems.

2. Basic notions on arcs and caps

PG(r, q) will denote (if r>2) a finite r-dimensional projective space of order q.
If r=2, the symbol PG(2, q) will be used only for a desarguesxan plane, whereas
w(q) will denote any projective plane of order q.

A (k;n)-arc of w(q) is a set of k points of m(q) such that n is the largest
number of them which are collinear. The (k; 2)-arcs are simply called k-arcs. In a
given plane a (k; n)-arc is “complete” if there does not exist a (k’; n)-arc which
contains it (with k'> k).

A (k; n)-cap of PG(r, q), where r=3, is a set of k points of PG(r, q) such that n

1



2 A. Barlouti

is the largest number of them which are collinear. The (k;2)-caps are simply
called k-caps.

A line g is an s-secant of a (k; n)-arc, K, if g contains s points of K; the
1-secants and 0O-secants will be called respectively tangent and external lines to K.
Let t, denote the total number of s-secants to K; the numbers (, are called the
characters of K, and K is said to have p characters if exactly p among its
characters are different from zero. The arc K is of type (s, s,,...,s,), where
§;<s,<-:-<s, =n, if only the characters , t,,...,t, are different from zero.

It has been proved that if there exists a k-arc in 7(q), then k <q+1 when q is
odd and k=<q+2 when q is even (see [9]).

In m(q), with q even, every (q+ 1)-arc is incomplete and can be uniquely
completed to form a (q + 2)-arc.

3. A generalization of a theorem by Buekenhout
In 1966 Buekenhout proved the following theorem (see [10]):

Theorem. If in a projective plane m(q) there is a (q+1)-arc K such that every
hexagon whose vertices are points of K is pascalian, then w(q) is pappian and K is a
conic.

This theorem shows that a geometrical property of a single arc can determine
the type of the plane in which the arc can be embedded. Alternative proofs for
this theorem were given by several authors (see [1, 14, 19, 20, 26]).

In a paper due to appear (see [21]) Korchmaros has obtained a generalization
of the above theorem for finite planes by weakening the hypothesis in the
following way: the hexagons inscribed in K which are required to be pascalian are
only those for which at least one of the lines joining two by two the three diagonal
points is a chord or a tangent of the oval.

4. On abstract arcs of type (m, n)

Abstract ovals were defined by Buekenhout [11] and their study led to many
interesting problems of classification and existence.

An example of an infinite abstract oval which is not embeddable in a projective
plane has been given by Krier [22]. It is still an open question whether there exist
or not finite abstract ovals which are not embeddable in a plane.

Barnabei and Zucchini [6] defined abstract arcs of type (m, n) which generalize
Buekenhout abstract ovals. Their definition includes as particular.cases the
(k; n)-arcs of types (0, m, n), (0, n) or (m, n) of a finite projective plane.

The notion of abstract arc of type (m, n) is founded on the definition of
generalized involution of type (m, n). Let K be a finite set, whose elements we
shall call points. A generalized involution of type (m, n) on K (with 1<=m <n) is
any partition of the points of K in subsets of cardinality m or n, which are called
respectively the blocks of type m or of type n.
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An abstract arc of type (m, n) is given by a pair (K, #), where K is a finite set
and ¢ is a set of generalized involutions of type (m, n) on K such thatif ¥" is the
set of blocks of all involutions of %, the following axioms hold:

(1) two distinct points of K belong to exactly one block of ¥;

(2) two blocks of ¥, with empty intersection, belong to exactly one involution
of ¥,

(3) in ¥ there is at least one block of type n.

Clearly, (k, n)-arcs of types (0, m, n), (0, n) or (m, n) of any finite projective
plane can be seen as abstract arcs of type (m, n) if we consider as elements of I
the partitions induced on the points of the arc by the lines of the pencils whose
centers do not belong to the arc.

It can be proved that if |K|:= k>2 every point of K belongs to the same
number, say d, of blocks.

Let (K, $) be any abstract arc of type (m, n). To this we can associate an
incidence structure (2P, £) as follows:

(i) P=KUJ;

(i) L=,

(iii) incidence is defined in a natural way: a point A of K is incident with ve ¥
when A ev and a point A of # is incident with ve ¥ when ve A,

The problem arises to decide whether or not the above structure can be
completed in a suitable way to a projective plane. Examples of sufficient condi-
tions for embeddability are the following:

(A) every involution of $ has a number d of blocks (where d is equal to the
number of blocks through any point of K);

(B) |¥|=d*—-d+1.

5.. The packing problem

We denote by m(r, q) the maximum number of points in PG(r, q) that belong to
a k-cap if r=3 or to a k-arc if r =2. The problem of finding the values of m(r, q),
known as the “packing problem”, seems to be very difficult and only the following
results are known to date:

m(2,q)=q+1, qodd, Bose [9],
m(2,q9)=q+2, qeven, Bose [9],
m(3,q)=q*+1, qodd, Bose [9],
m(3,q)=q*+1, qeven, #2,  Quist[25],
m(r, 2) =2/, r=2, Bose [9],

m(4, 3) =20, Pellegrino [24]

m(S, 3) =56, Hill [16].
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The knowledge of m(r, q) is important for applications to statistic and to coding
theory, and a considerable amount of work has also been done to provide upper
and lower bounds on m(r, q) for g=4 (see [15, 16, 17, 18, 23]).

In [24] is proved the existence of only two non-isomorphic 20-caps in PG(4, 3).

The packing problem arises (and in general is far from being solved) also for
non desarguesian planes, for k-sets of kind s and for (k, n)-arcs and (k, n)-caps.
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COMBINATORIAL PROBIEMS OF EXPERIMENTAL
DESIGN I1: FACTORIAL DESIGNS*

R.C. BOSE
Colorado State University, Fort Collins. CO 80523, U/.S.A.

The designs used for statistically controlled experiments fall into two important classes:
Incomplete block designs and factorial designs. The combinatorial problems arising in connec-
tion with incomplete block designs were surveyed in an earlier paper, Bose [13]. This is a
companion paper which surveys the combinatorial problems of factorial designs.

1. Introduction

The principles of experimental design as we know it today were formulated by
R.A. Fisher in his famous book, Statistical Methods for Research Workers [25] and
in his paper on “The Arrangement of Field Experiments” [26]. They arose out of
his own attempts and those of his precursors to increase the precision of field
experiments. The object of the experimenter is to investigate the response of
experimental units to a set of treatments. The experimental units are divided into
sets called blocks which are relatively homogeneous. A certain set of treatments is
applied to the units (plots) in a given block and the response observed. Statistical
analysis is then used to estimate the effects of treatments. The three principles
formulated by Fisher are randomization, replication and local control. Randomiza-
tion dictates that once the set of treatments which are to be applied to the units of
a given block have been chosen they should be applied randomly to the different
units. The principle of replication requires that each treatment be applied to more
than one experimental unit. In general, these units belong to different blocks. Due
to the variability of the experimental material, the responses of the units to which
the same treatment has been applied are not identical. Statistical analysis allows
us to estimate the precision of the estimated treatment effects. If the number of
treatments is large and experimental material is not homogeneous, precision can
be increased by not accommodating all treatments in a given block. Thus blocks
are incomplete. The problem of design is to select sets of treatments to be applied
to the units of different blocks. The selection is subject to combinatorial con-
straints, since apart from the question of precision, it is desirable to have a design
such that statistical analysis is as simple as possible, and such that its results are
easily interpreted. There are two important classes of designs. In incomplete block
designs (so called) the treatments are simple; for example, we may be interested
in comparing the yields or some other characteristic of a large number of varieties

* Research supported by AFOSR Grant Number 77-3127.
#



8 R.C. Bose

of corn. On the other hand, treatments may be complex. Thus each treatment
may consist of a number of factors, each at a certain level. For example, in
studying effects of fertilizers, each treatment may contain pitrogen, potash and
sulphate at different levels. Designs with complex treatments are called Factorial
Designs. In this paper, we shall attempt a survey of combinatorial problems
related to Factorial Designs. The combinational problems related to Incomplete
Block Designs have been surveyed in an earlier paper, Bose [13].

2. Factorial designs

Suppose there are m factors; A;, A,, ..., A, in a factorial experiment and the
factor A, can be applied at any one of s; levels. A treatment in which the factor A,
has been applied at the level x; (i=1,2,...,m) may be denoted by
afray - aky. We say that the experiment is of the type s, Xs,% - -Xs,. The
number of different treatments is obviously N=g;s,- " s,. If s;,=s5,=--:=5,
we have a symmetric factorial experiment of the type s™.

The effect of the treatment a}' a3 - - - afy can be denoted by #(x,, X5, . . ., X,)-

There are N=s,s, -5, treatment effects. We consider all possible linear
functions (with real coefficients) of the treatment effects. A typical linear function
is '

L= Y, Copimt s %oy 5.5 M) (2.1)

where the summation is over all possible levels, 1<x;<s, i= i, 2,...,m.
Orthogonality and independence of these linear functions are defined in the
usual way. The mean of the treatment effects is given by
1
=gy LG X ) (2.2)
A linear function is said to be a contrast if it is orthogonal to the mean. Hence a
necessary and sufficient condition for L given by (2.1) to be a contrast is

Y Crpox=0. (2.3)

Each independent linear function of the treatment effects can be regarded as
carrying a degree of freedom (d.f.). One of these linear functions can be taken as
the mean w. Hence N —1 independent contrasts carry N —1 degrees of freedom.
These degrees of freedom can be further subdivided into main effects and
interactions as follows: A contrast is said to belong to the main effect A, if the
coefficients in the linear function constituting the contrast gre independent of the
levels of the factors other than A, Thus there are s — 1 independent contrasts
which belong to the main effect A, and they carry s;,—1 d.f. '

A contrast is said to belong to the interaction of the factors A; and A; (i#j), if
it is orthogonal to any main effect, and the coefficients of the linear function
constituting the contrast are independent of the levels of the factors other than A,
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and A,. Thus there are (s,—1)(s;— 1) independent contrasts which belong to the
interaction of A; and A;, and they carry (s = D)(s;—1) d.f.

In general, a contrast is said to belong to the interaction of the factors
A, A,, ..., A, if the linear function constituting the contrast is orthogonal to
any main effect or to any k-factor interaction k <r, and the coefficients of the
linear function constituting the contrast are independent of the levels of the
factors other than A,, A, ..., A,. Thus there are (s;, —1)(s,—1) - - - (s;, — 1) inde-
pendent contrasts which belong to the interaction A,, A, ..., A,, and they carry
as many d.f. Now

" f (T)‘sh‘ D=1 (s, =D =555, =N.

Hence the mean, main effects and the various interactions carry the N d.f.
which is the number of independent linear functions.

In a complete factorial experiment with r replications, there are r blocks, and
each block has N plots (experimental units) to which the treatments are applied at
random. The main effects and various interactions can then be estimated.

3. Confounding and fractional replication

In a complete factorial the block size tends to be large. Within block variability
increases the error and reduces the efficiency. Yates [48,49] developed the
concept of confounding to overcome this difficulty. In many practical situations
higher order interactions tend to be negligible. Yates method takes advantage of
this fact to increase the efficiency of the experiment. We illustrate this concept by
considering a symmetrical 2> experiment with three factors A,, A,, A, each at
two levels 0 and 1.

In Yates’ notation the treatment aj' a3* - - - a,r is regarded as a formal algeb-
raic product. Since a?=1 and a}=a, so for any treatment in which the level
x; =0, the factor a;j is dropped, and is replaced by a; if x; = 1. When all the levels
are zero, the treatment is denoted by 1. Thus the eight treatments of a 2°
experiment can be denoted by

1, ay, a,, a3, a,as, a a3, a,a,, a,a,4a;.
The mean can then be written as the formal product
p=3(a, +1)(a,+ 1)(as+1) (3.1)

since the linear function constituting the mean is obtained by formally developing
the product on the right-hand side of (3.1).
The main effects and interactions can be written as

Ya, £ )(a,£1)(a,+1) (3.2)
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where the +ve or the —ve sign is taken in g; = | according as the factor A; occurs
at the level 0 or | in the effect. The numerical factor is conventionally taken as the
reciprocal of the number of positive terms in any main effect or interaction. Thus
the interaction between the three factors A,, A,, A,, is written as

A, A AL =Na, - )(a,— 1)(as- D). (3.3)

The treatments can be split in two groups a,a,as, a,, a,, as, and 1, a,a,, asa,,
a,a,. The treatments of the first (second) group carry a positive (negative) sign in
the formal expansion of the right-hand side of (3.3).

If the treatments of different groups are assigned to different blocks as in Fig. |
and we take the usual linear model

Ef{y(ai a3 a3} =t(x,, x5. x3) + b+ g (3.4)

where y(a}' a3 ay') denotes the observed response from the plot to which the
treatment a}' a3 ay> has been applied. b; is the effect of block which contains this
plot and g is the general effect, then we can estimate the main effects and two
factor interaction, but the estimate of the three factor interaction is confounded
with blocks since we can only estimate

Y(a,a,ay+a,+a,+a;))—(1+a,+a,+a;)+b,—b,} (3.5)

where b; is the effect of the ith block.
The general problem of confounding in the symmetrical case can be stated as

follows:

Let s=p" where p is a prime. Consider a symmetric factorial experiment s™. It
is required to split the s™ treatments into s™ " blocks, each of size s, so that as
far as possible lower order interactions are unconfounded.

A general theory of confounding was developed by Bernard [7] for the 2™
factorial experiment. We can write the r factor interaction

m

A AL A= (g p2m ! (3.6)

ji=1
where the negative sign is taken in a; £ 1 if j belongs to the set {i,, i, ..., i} and
the positive sign is taken otherwise. Consider the Abelian group G generated by
the symbols A,, A,,..., A,, with the relations
Al=Al=..-= A =1

where [ is the identity element of the group. Bernard shows that any confounded
arrangement corresponds to a subgroup of G. If we take any r independent

a, ay a,a, 1

a, a,2,a, aa, aa,
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