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PREFACE

This text has grown out of a one-term freshman physics course given by
the author for a number of years as part of the General Education pro-
gram at Florida State University. Only students who do not intend to
major in any science take this course, and it is open to all entering fresh-
men with no prerequisites. The material therefore must be presented with
a minimum of mathematical complication, and nothing more advanced
than high school algebra is used.

Since students come to the course with little interest and often with
downright antagonism, an effort has been made to develop interest in this
captive audience by presenting the material in as nearly a narrative form
as possible. Examples of contemporary interest have been used when
appropriate, and presentations have been given in terms of simple pictures
which draw upon the experience of such students for visualization. Much
attention has been paid to motivation for each new topic. Some of the
classical topics traditionally treated are not considered in any detail
because these students so often find them dry and they are not essential -
to the general presentation.

The philosophy of the course is reminiscent of the PSSC high school
course, and the teaching aids developed for that course have been used
extensively. This modern approach has proved to be readlly adaptable to
the kind of qualitative presentatlon needed here. It is hoped that these
features of the course have been carried over into the text successfully.

The study of light has been found to provide a good basis for the nar-
rative approach because a presentation beginning with the earliest theories
of Sir Issac Newton and finally reaching the most modern p01nt of view
can motivate the study of all the other major fields of physics. The mate-
rial is divided into five parts, beginning with an Introduction covering
mostly background material designed to prepare the student to be able
to speak the language of the text. The other four parts are Light, Mechan-
ics, Electricity and Magnetism, and Modern Physics.

All of the material presented can be covered adequately in one term,
and the author has given one-semester, one-trimester, and one-quarter
versions of it. An Instructor’s Handbook prepared by the author is avail-
able which gives suggested course outlines for each version. Generally
the sections can be covered in one lecture, and in some cases two sections
can be combined into one lecture.
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Demonstration experiments are extremely helpful in the presentation
of the material. The use of the PSSC films is an exceptionally good method
of providing these demonstrations, and the text has been designed so
that these or an equivalent set of films can be incorporated into the course.
The Instructor’s Handbook gives a list of these films appropriate to the
various sections. Demonstration experiments have also been described in
some detail in the text, and discussions of some of these that use simple
apparatus are included in the Handbook.

Although it is not the purpose of this text to develop a facility for
solving physics problems, sets of problems and discussion questions have
been included for each part. These are designed to aid the student to
focus on the principles in the text by providing him with some familiarity
in the manipulation of their mathematical descrlptlons A list of references
for further reading appropriate to each part is given in Appendix 3. The
main goal of this presentation is to give the student the basis upon which
to build a valid concept of the role of physics in contemporary culture.

I would like to thank Professors Robert A. Kromhout and Guenter
Schwarz of Florida State University for many helpful discussions and sug-
gestions during the development of the course upon which this text is
based. I am also indebted to Professor Robert Resnick of Renssalaer
Polytechnic Institute for reading the original manuscript and making many
helpful suggestions for its improvement and to Professor L. Worth Sea-
gondollar of North Carolina State University and Dr. William J. Thompson
and Dr. Jack P. Aldridge of Florida State University for helping in the
class testing of the preliminary edition. Finally, I would like to dedicate
this book to my wife, Helen, whose outstanding typing ability made the
preliminary edition possible and without whose devotion this text would
not have been written.

Steve Edwards
Tallahassee, Florida
September 1970
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1

INTRODUCTION

1.1 PHYSICS AND PHYSICISTS

In the decade beginning around 1915, a small group of men associated
with several universities in Europe engaged in a lively debate concerning
the submicroscopic constituents of matter and whether they should be
described as somewhat vague wavelike patterns of motion or as extremely
small hard pieces of matter possessing definite properties. Most laymen
did not even take note of these debates; those few who did probably placed
them in the same category as the age-old discussion about how many angels
can stand on the head of a pin and dismissed the debaters as impractical
ivory tower intellectuals. After all, the members of this small group were
not debating whether this subatomic world even existed, which would have
been an understandable question for ordinary men; instead they were
arguing the relative merits of two different ways of describing the subatomic
world to each other should it indeed exist. What could be farther from
the concern of most people?

To suggest that resolving the issues involved in these debates might
change the world forever would have seemed absurd even to the debaters.
In fact, however, one direct consequence of their conclusions has been
the development of nuclear power and our entry into the Atomic Age.
Some of the techniques developed during the process of their arriving at
these conclusions about the subatomic world have led to the invention of
radio, television, and computers, and to the exploration of space. The whole
new age of medicine is founded on the modern biophysical and biochemical
concepts that scientists formulated once they understood the problems that
interested these debaters. Finally, our society owes its high level of tech-
nology to their curiosity about the structure of matter and their desire
to understand this facet of nature. We who live in this society should
therefore seek to know who these men were and to understand the
thought processes and considerations that enabled them to so revolutionize
our lives.

The science that these men studied is called physics, and they are called
physicists. We can take as a working definition of physics that it is the
study of matter and radiation, including their motion in time and space
and their mutual interaction. This definition thus includes almost every
natural phenomenon, and many people consider physics to be the funda-
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2 INTRODUCTION

mental natural science. Indeed, various other branches of science, such
as chemistry and meteorology, can be considered areas of application of
fundamental physical principles. They are often called physical sciences
for this reason.

The main purpose of our present discussion is to gain a certain famili-
arity with what physics is and what physicists do, a familiarity any educated
citizen in contemporary society should have. To attain a deep ‘unde rstanding
of the principles of physics whereby one is able to apply these prine Ipl(‘
professionally requires a broad mathematical background. Acquiring such
understanding is beyond our purposes, however. W« wish simply to present
a picture of physics thal can be understood with no more preparation than
high school algebra, some simple plane geometry, and a few other mathe-
matical ideas to be introduced as needed. We shall stress understanding
of the physical concepts rather than mathematical rigor, and in keeping
with this approach we shall always endeavor to give descriptions that can
be visualized in terms of common experiences.

The tools of the physicist are observation and description. He observes
phenomena and then tries to describe what he has observed in such a way
as to obtain some fundamental understanding of nature from the descrip-
tions. A good description ought to make predictions of future observations
possible, and those that do this are called theories. A theory that is
successful in its prediction of most of the cases with which it is concerned
is often designated a law. As our discussion develops we shall see how
a description can become a theory and a law.

Visible light is the most common form of radiation. The study of light
provides a foundation from which to range over all the main hel(l.s of
physics, and we shall approach the subject in this way. Our general method
will be to discuss the observations that led to the descriptions constitut-
ing the generally accepted theories of physics. In applying this method
to the study of light, we shall see that we must consider all of nature
from the wide expanse of the universe to the microscopic world of the
atom itself.

Before we begin our treatment of physics in earnest, we must consider
some background information to make certain we are speaking the same
language. Some of this material will be mathematical background which
may seem somewhat uncorrelated. We shall use our working definition of
physics as a guide in this section, discussing space, time, motion, and
matter. Because the remainder of Part 1 will be devoled to this necessary
background, the general direction of our discussions may not seem clear
until we actually begm our detailed analysis of the ~.ubJNl of physics in
Part 2.
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1.2 MEASUREMENT AND SYSTEMS OF UNITS

The observational branch of physics is called experimental physics, and
experimental physicists devole themselves almost exclusively to making
experimental observations, often guided by theory. One of their principal
concerns is to design the apparatus used in this process. Since in the final
analysis we must rely on our human senses to make our observations, the
apparatus of physics is actually an extension of these senses. As we shall
see later, much of this apparatus has found its way into our daily lives
through applications not originally intended by its developers.

Most observations must be quantitative, and the process of quantitative
observation is called measurement. Although you are probably already
familiar with this process, it is worth our while to discuss it briefly from
the point of view of a physicist. The physicist makes his measurements
by making comparisons of unknown quantities with known quantities. The
known quantities are called standards and are arbitrarily chosen for
convenience.

Of course the physicist must be able to communicate the results of
his observations to other scientists, and therefore he must be sure that
other scientists know the standards he uses. The names given to standards
of measurement are called units; several generally accepted systems of units
have been developed over the years. For example, the standard of length
in the system used by most scientists is called the meter. The meter is
approximately equal to one ten-millionth of the distance from the North
Pole to the equator of the earth. In fact, in 1791 a committee of French
scientists chose this distance for the meter because it could be conveniently
reproduced; this standard meter was adopted by the French Academy of
Sciences in 1791. In 1889 the meter was redefined to be the distance
between two marks on a platinum-iridium bar kept near Paris at the Bureau
des Poids et Measures in Sévres. Exact copies of this standard meter are
kept in the bureaus of standards of all countries in the world. Thus when
the results of a measurement of length are given in meters, all scientists
throughout the world know exactly how long the new measurement is.

Actually, as the science of measurement developed further, it became
apparent that for certain purposes the 1889 definition of the meter was
not accurate enough. In 1960 the meter was again redefined by stating
the distance between the two marks on the platinum-iridium bar in terms
of a certain multiple of the wavelength of light emitted by the rare gas
krypton. (We will discuss the wavelength of light in Section 2.6.)

Figure 1.1 illustrates the measurement process. The unknown length
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Fig. 1.1 Measuring the length of a table.

of the table is compared with that of a standard meterstick by counting
the number of times its length fits into the length of the table. In this
case it fits three times, and we report that the table is 3 meters long. Thus
the measurement process is essentially a counting process. Although in
some instances it may appear that the counting is done indirectly, all
measurements are actually made in this way. The size of an unknown is
determined by counting the number of times it contains a known and
generally accepted standard.

Systems of units are identified by the names given to the standards
for three fundamental quantities in each system. These quantities are
length, time, and amount of matter (this last quantity we shall define and
discuss in some detail in a later section). The unit of time in all systems
is called the second which is chosen on the basis of daily rotations of the
earth, a very convenient clock. In modern terms we define the second
as the time between ticks on a clock that ticks 86,400 times in an average
day. This definition, like that for the standard meter, is not accurate enough
for certain purposes, and in 1967 an atomic standard for time was adopted.
Today we set the rate of ticking of our clocks by comparing them with
very stable atomic vibrations. This process of comparison is called calibra-
tion.

The second is not a convenient unit for most time spans in everyday
life, and for this reason we give the most commonly used multiples of
seconds special names. Sixty seconds is called a minute, sixty minutes an
hour, twenty-four hours a day, three hundred sixty-five days a year, one
hundred years a century, and so on. For scientific purposes, however, it
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is more convenient to use only one unit, the second, and we have developed
convenient ways to write large multiples or small fractions of this unit.

The system of units adopted by the French has the great advantage
that it is based on multiples of 10. For this reason it is called a metric
system. The British also have a system based on multiples of 12. Its unit
of length is the foot, which is now defined as exactly 0.3048 meter.
Although the base 12 of the British system makes it inconvenient to apply,
this system is still used in many English-speaking countries by everyone
but scientists. In this book we shall use the metric system, except in certain
instances where British units will help us relate our results to everyday
experiences.

Multiples of metric units are also given special names which are often
useful. The names of the multiples are formed by adding to the basic unit
special prefixes denoting various powers of the factor 10 (the common base
of all metric units). For example, 1000 meters is called a kilometer. The
prefix “kilo” means 1000 or 103 in powers-of-ten notation. Table 1.1 lists
some of these prefixes and the powers of ten to which they correspond.
We have used the standard negative power notation for fractions like
one-tenth and one-hundredth. \

Although the standard systems of units are designed for convenience,
the fact that they use only one unit for each quantity can be cumbersome,
especially if we are dealmg with very large or very small values. For
example, the human race is lhought to have developed about
1,000,000,000,000 seconds ago and the radius of an atom is about
1/10,000,000,000 of a meter. Numbers as large or as small as these are
very awkward to write. We avoid such problems by writing all numbers
in terms of powers of ten or scientific notation.

In scientific notation each number is written as the product of a decimal
number and a power of ten. The decimal number is written with only
one digit to the left of the decimal point. For example, the number 1700
would be 1.7 X 103. For numbers less than one we use the negative powers
of ten. The number 0.0017, for example, would be written 1.7 X 103,

TABLE 1.1 METRIC PREFIXES AND CORRESPONDING POWERS-OF-TEN

mega 106
kilo 103
deci 10!
centi 102
milli 103

micro 10-6
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In this notation our age of the human race would be 102 seconds and
the atomic radius 10~1° meter. This notation also simplifies numerical
calculations because the laws for adding, subtracting, multiplying, and
dividing exponential numbers are relatively simple. Some facility with this
system of notation will be useful in our discussions.

Another advantage of scientific notation is that it provides us with a
fast way to round off numbers, called orders of magnitude. The order of
magnitude of a number is the power of ten to which it is nearest. For
example, 253 is between 100 and 1000, but it is nearer to 100 than 1000.
Therefore its order of magmlude is 102, We indicate this by writing
253 ~ 102 (where ~ is read as “is of the order of ). In scientific notation
253 = 2.53 X 102, and we see that the order of magnitude is just the
power-of-ten factor. For a number like 7 X 102, however, we must be
careful. Its order of magnitude is 103 rather than the power-of-ten factor

10? because 700 is nearer to 1000 than it is to 100. Alternatively. we
may say that 7 is nearer to 10 than it is to 1, so that 7 X 102 is nearer
to 10 % 102 than it is to 1 X 102. In this example then the order of
magnitude is the power of ten next higher than that of the power-of-ten
factor in the number.

For numbers less than one we must exercise even more care. The order
of magnitude of 7 X 1072 is again the power of ten next higher than
that of its power-of-ten factor because 7 is nearer to 10 than it is to 1,
but in this case the next higher power is not 1073, Increasing the numerical
value of the power for a negative power of ten will decrease the number
rather than increase it. The next higher power is 1071, so the order of
magnitude of 7 X 1072 is 10! rather than 10=2 or 1073,

We often use orders of magnitude when comparing numbers. Rather
than referring to two lengths as being about the same size, we say that
they are of the same order of magnitude. This means that they agree to
within a factor of ten. Using orders of magnitude, we can perform rough
calculations rather easily as a check on our results. Since the orders of
magnitude are all powers of ten, an order-of-magnitude calculation can
be done quickly using them instead of the actual numbers involved. The
answer obtained should then be the order of magnitude of the actual result.
If the order of magnitude agrees with the expected order of magnitude
of the result, we can proceed to the exact calculation with increased
confidence.

1.3 MATHEMATICAL FUNCTIONS AND SCALING LAWS

The use of convenient systems of units, scientific notation, and orders of
magnitude can simplify the problems of recording results of quantitative
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observations and communicating them to other scientists. To facilitate the
development of useful descriptions of such results, however, we should
be able to give as concise a summary of them as possible, which in turn
means that a concise language in which to express our results is needed.
Mathematics, an independenl scientific diecipline in its own righl provides
physics and the other sciences with the concise language that is required.

To see how helpful mathematics can be, let us consider a very sumple
(’\l)t‘lllﬂ( nt. Suppose that we have a number of blocks of iron of various
sizes and that for some reason we are interested in determining the welghts
that u)lrf*s])ond to the different sizes. One way to indicate the sizes of
the various blocks would be to glve the volume of each. We could perform
our experiment by first measuring the volume of each block and then
weighing it. Since most of us are already familiar with the British unit
of weight, the pound, we shall use the British system of units.

We have recorded the results of our experiment in Table 1.2. The
volumes in cubic feet (ft3) are listed in order of ascending size in the column
on the left. The corresponding weights in pounds (lb) are listed in that
on the right. This table already gives a concise and useful summary of
our results. If we wish to determine the weight of a piece of iron whose
volume is known, we need only look in the left column for the value of
V- and then move across the row to find the corresponding value of W
in the right column.

Tables of this sort provide useful summaries of the data collected in
various experiments, and books containing tables of data have been pub-
lished for general use. We can present a more concise summary of this
data, however. If we compare the values of W corresponding to increasing
values of V, we notice that W increases as V does. In fact, it does so
at the same rate. A mathematician describes this fact by saying that W
is a function of V. The fact that W increases at the same rate as V. tells
the mathematician the functional relationship between W and V.

From our table we see that if we double V' we will double W, and
if we triple V" we will triple W, and so on. The mathematician says that

TABLE 1.2 RESULTS OF EXPERIMENT WITH BLOCKS OF IRON

o ey
1 440
2 880
3 1320
4

1760
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W varies directly as V or that W is directly proportional to V. This
statement is a concise summary of our table, and by using mathematical
symbols we can be even more concise. We can write the statement as

WaoV

where the symbol oc is read “is proportional to.”

Although the proportionality statement is a great improvement, it does
not replace our table; we still must use the table to find the values of
W. The next step is to convert the proportionality into an equation. We

do this by multiplying V" by a constant of proportionality C as follows:
W =CV (1.1)
We can determine C from the table. When V is 1 ft3, W is 440 lb; thus

1b
C = 440 — 1.2
e (1.2)
Finally, our most concise summary of Table 1.2 is then
W = 440V (1.3)

Equation 1.3 is a concise summary of all the information contained in
Table 1.2. It tells us that W is a function of V, and it tells what the function
is. To find the value of W in pounds corresponding to a given value of
V in cubic feet, we just multiply that value of ¥ by 440 1b/ft3. Thus
the equation is a rule for finding W if we know V. We can even generalize
our results from this and gugss that the same relation between V and W
holds for substances other than iron with different values of C. In this
case C is called the weight density of the material.

The function forms one of the basic concepts in mathematics. Its proper
treatment in the most sophisticatéd mathematical formalisms requires a
careful and rigorous definition. For our purposes, however, it is sufficient
to think of a function as a rule that relates one set of numbers to another.
Table 1.2 is one way of writing the function giving # in terms of V. Here
the rule tells how to locate the appropriate values of W in the rows and
columns of the table. The rule in Equation 1.3 is another way of writing
this function. It is by far the most convenient and useful way. One goal
of the physicist is usually to find the simplest mathematical function that
will concisely describe the results of his observations.

It is useful for us to borrow a few more of the mathematician’s symbolic
descriptions of functions. When a quantity y is known to be a function
of another quantity x, we write this fact as

y = /W ‘ (1.4)
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We read this as “y equals f of x.”” Sometimes we indicate it more simply
by writing y(x), read “y of x.” The quantities x and y are called variables,
with x the independent variable and y the dependent variable. In the
example with # and V' we write W (V), indicating that W is a function
of the independent variable V. We shall use this symbolism whenever
convenient in our discussions.

Equation 1.3 is an example of a general class of functions occurring
so often in physics that it is given a special name. We calculate # from
V by multiplying the first power of ¥ by the constant C. Other examples
of this class of functions are provided by some simple geometric formulas
with which we are all familiar. Figure 1.2 shows three common geometric
figures: a circle of radius R; a cube of side L; and a rectangular solid
of length L, width W, and height H.

The area of the circle in Figure 1.2 is given by

A = mR? (1.5)
The volume of the cube is
V = I? (1.6)
and that of the rectangular solid is l
V=LWH (L.7)

In each of these equations, as in Equation 1.3, we find the value of the
dependent variable by raising the independent variable to some power.
In Equation 1.7 L, W, and H are dimensions of length or linear dimensions,
and so V is the third power of the linear dimensions (i.e., the product
of three of them).

Functions of this type are called power laws, and most functions used
in physics are power laws. As we shall see in later sections, the most
important power law involves an inverse second power of the independent
variable. An example of an inverse power law is afforded by the relationship

L

Fig. 1.2 Circle, cube, and rectangular solid.



