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PREFACE

\

This book is designed to present the fundamentals of data structures from an object-
oriented perspective. The study of data structures is core to a computer science
curriculum. It provides a rich context for the study of problem-solving techniques
and program design and utilizes powerful programming constructs and algorithms.

Program Design

Problem Solving \

Data Structures

Algorithms

Programming

This book uses the versatile language C++ whose classes and object-oriented
constructs are specifically designed to efficiently implement data structures. Al-
though a number of object-oriented languages are available, C++ has developed a
preeminence due to its origins in the popular C programming language and its use
by many software vendors. We develop each data structure around the concept of
an abstract data type (ADT) that defines both data organization and data handling
operations. We are supported by the C++ language that provides a class type to
represent an ADT and to efficiently use the structures in an object.

Design of the Book

Data Structures with C++ organizes the study of data structures around collection
classes that include lists, trees, sets, graphs, and dictionaries. In the process,
we cover the fundamental topics of data structures and develop object-oriented
programming methodology. The structures and methodology are implemented in a
series of complete programs and case studies. To evaluate the efficiency of algo-
rithms, we give a simple and early introduction to Big-O notation.

Chapters 1 to 11 provide the traditional topics in a first course in data structures
(CS 2). A formal treatment of inheritance and virtual functions is given in Chapter
12 and the topics are used to implement the advanced data structures in Chapters
13 and 14. Overall, the material in Chapters 12 to 14 defines topics traditionally
covered in an advanced data structures/algorithms course (CS 7) and an advanced
programming course. We include a careful development of templates and operator
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overloading to support generalized structures. We use these powerful C++ language
constructs to simplify our use of the data structures.

A computer professional could use Data Structures with C++ as a self-study
guide to data structures, which would make it possible to understand most class
libraries, research articles, and advanced trade publications.

Chapter Descriptions

Most of the book’s chapters develop abstract data types and describe their implemen-
tation as a C++ class. The declaration of each class and its key methods also are
included in the book. In many cases, the full definition is given, yet in others, the
definition of selected class methods are given. The full implementation of the classes
are included in a program supplement.

CHAPTER 1: INTRODUCTION

This chapter is an overview chapter that introduces abstract data types and object-
oriented programming using C++. The concept of an ADT and the related attributes
of data encapsulation and information hiding are developed. This chapter also intro-
duces inheritance and polymorphism, which are formally covered in Chapter 12.

CHAPTER 2: BASIC DATA TYPES

Programming languages provide primitive numeric and character types that cover
integer and floating point numbers, character data, and user-defined enumeration
types. The primitive types combine to create array, record, string, and file structures.
This chapter describes ADTs for language types using C++ as an example.

CHAPTER 3: ABSTRACT DATA TYPES AND CLASSES

This book as a whole provides a formal study of ADTs and their representation as
C++ classes. Specifically, this chapler defines basic class concepls including data
members, constructors, and method definitions.

CHAPTER 4: COLLECTION CLASSES

A collection is a storage class with data handling tools to add, delete, or update
the items. The study of collection classes is the main focus of this book. Therefore,
this chapter provides an example of the different collection types that are presented
in the book. The chapter includes a simple early introduction to the Big-O notation,
which measures the efficiency of an algorithm. The notation is used throughout the
book to compare and contrast different algorithms. The chapter concludes with a
study of the SeqList class thal is a prototype of a general list structure.
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CHAPTER 5: STACKS AND QUEUES

This chapter discusses stacks and queues, which are fundamental collection classes
that maintain data in LIFO (last-in first-out) and FIFO (first-in first-out) order. It
also develops the priority queue, a modified version of a queue in which the client
always deletes the item of highest priority from the list. A case study uses priority
queues Lo perform event-driven simulation.

CHAPTER 6: ABSTRACT OPERATORS

An abstract data Lype defines a set of methods to initialize and manage data. In this
chapter, we extend language-defined operators (e.g., +, *, <<, elc.) to abstract
data types. The process, called operator overloading, redefines standard operator
symbols to implement operations in the ADT. A fully developed rational number
class illustrates operator overloading and type conversion, as well as introducing
friends to overload the standard C++ I/0 operators.

CHAPTER 7: GENERIC DATA TYPES

C++ uses the template mechanism Lo provide for generic functions and classes
that support different data types. Templates provide powerful generality to our data
structures. This concept is illustrated with a template-based version of the Stack
class and ils application to infix expression evaluation.

CHAPTER 8: CLASSES AND DYNAMIC MEMORY

Dynamic data structures use memory allocated by the system at run time. They
allow us to define structures without size constraints and enhance the usability of
our classes. Their use, however, requires careful attention. We introduce the copy
constructor, overloaded assignment operator, and destructor methods, which allow
us to properly copy and assign dynamic data and then deallocate it when an object
is deleted. The power of dynamic data is illustrated with the Array, String, and Set
classes. These classes are used throughout the remainder of the book.

CHAPTER 9: LINKED LISTS

The use of lists Lo store and retrieve data is a continuing theme in the book because
lists are fundamental to the design of most data applications. This chapter introduces
linked lists, which allow for dynamic list handling. We use a twofold approach that
first develops a basic node class and creates functions for adding or deleting items
from the list. A more abstract approach creates a linked list class with a built-in
traversal mechanism to scan the items in the list. The LinkedList class is used to
implement the SeqList class and the Queue class. In each case, a linked list object
is included by composition. The approach provides a powerful tool for developing
data structures. This chapter also discusses circular and doubly linked lists that
have interesting applications. The chapter features a printer queue case study
as well.
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CHAPTER 10: RECURSION

Recursion is an important problem-solving tool in both computer science and mathe-
matics. We introduce recursion and illustrate its use in a variety of contexts. A
series of applications uses recursion with mathematical formulas, combinatorics,
maze traversal, and puzzles. The Fibonacci sequence is used to compare the effi-
ciency of a recursive algorithm, an iterative algorithm, or direct calculations in
computing a term of the sequence.

CHAPTER 11: TREES

Linked lists define a set of nodes that are sequentially accessed beginning at the
head. The data structure is called a linear list. In many applications, objects exhibit
a nonlinear order in which a member may have multiple successors. In Chapter 11,
we introduce a basic nonlinear structure called a tree in which all data items
emanate from a single source—the root. A tree is an ideal structure for describing
a hierarchical structure such as a computer file system and a business reporting
chart. In this chapter, we restrict our analysis to binary trees in which each node
has, at most, two descendants. We develop the TreeNode class to implement these
trees and present applications that include the classical preorder, inorder, and
postorder scan algorithms. Binary trees find application as a list structure that
efficiently stores large volumes of data. The structure, called a binary search tree,
is implemented in the BinSTree class. The class is featured in a case study that
develops a document concordance.

CHAPTER 12: INHERITANCE AND ABSTRACT CLASSES

Inheritance is a fundamental concept in object-oriented programming. This chapter
discusses the main features of inheritance, carefully develops its implementation in
C++, and introduces virtual functions as tools that utilize the power of inheritance. It
also develops the concept of an abstract base class with pure virtual functions
Virtual functions are fundamental to object-oriented programming and are used with
subsequent topics in the book. This chapter includes the introduction of iterators
that define a uniform and general traversal mechanism for the different lists in the
book. It concludes with an example of inheritance and virtual functions to develop
heterogenous arrays and linked lists.

CHAPTER 13: ADVANCED NONLINEAR STRUCTURES

This chapter continues the development of binary trees and introduces additional
nonlinear structures. It describes array-based trees that model an array as a com-
plete binary tree. An extensive study of heaps is provided, and the concept is used
to implement the heap sort and priority queues. Although binary search trees are
usually good structures with which to implement a list, degenerate cases can be
inefficient. Data structures provide different height-balanced structures that ensure
fast average search time. Using inheritance, a new search tree class called AVL
trees is derived. The chapter concludes with an introduction to graphs that features
a series of classic algorithms.
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CHAPTER 14: ORGANIZING COLLECTIONS

This chapter looks at searching and sorting algorithms for general collections. In
the process, the classical array-based selection, bubble, and insertion sort algo-
rithms are developed. Our study includes the famous QuickSort algorithm. In this
book, data that is stored in internal memory is emphasized. For larger sets, data
can be stored on disk and external methods to search and sort the data can be
used. We develop the BinFile class for direct file access, and use its methods to
illustrate both the external index sequential search and the external merge sort
algorithm. A section on associative arrays, or dictionaries, generalizes the concept
of an array index.

Required Background

This book assumes the reader has completed a first course in programming and is
fluent with basic C++. Chapter 2 defines the primitive data structures of C++ and
illustrates their uses in several complete programs. This chapter can be used as a
standard for defining the C++ prerequisites. For the interested reader, the authors
provide a C+ + tutorial that defines the primitive types of the language and the syntax
for arrays, control structures, 1/0, functions, and pointers. The tutorial includes a
discussion of each topic along with examples, complete programs, and exercises.

Supplements

Complete source code listings for all classes and programs are available through
an Internet ftp connection from the authors’ institution, the University of the Pacific.
The C++ code in the book has been tested and run using the latest Borland compiler.
With very few exceptions, the programs also compile and run on a Macintosh system
using Symantec C++ and on a Unix system using GNU C+ +.

For those having Internet connection, execute an ftp to “ftp.cs.uop.edu”. Upon
connecting to the system, your login name is “anonymous” and your password is
your Internet mail address. The software is located in the directory “/pub/C++".

Readers may contact the authors directly Lo receive a copy of the tutorial. Order
information is available by electronic mail—send to “billf@uop.edu”—or by the U.S.
mail—write to Bill Topp, 456 S. Regent, Stockton, CA 95204.

The Instructor’'s Guide offers teaching tips for each chapter, answers to most
written exercises, and sample tests. The guide features solutions to many of the
programming exercises and is available from Prentice Hall.
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