Data Structures
with C++

Priority |
Queue |

Dictionary

Direct i 3 Sequential
Access ‘ : Access

Generalized |
~ Indexing

Hierarchical

William Ford William Topp



DATA STRUCTURES
WITH
C++

William Ford
University of the Pacific

William Topp

University of the Pacific

Prentice Hall, Upper Saddle River, New Jersey 07458



Library of Congress Cataloging-in-Publication Data
Ford, William
Data structures with C++ / by William Ford/William Topp.
p. cm.
Includes bibliographical references and index.
ISBN 0-02-420971-6 : $36.00
1. C++ (Computer program language) 2. Data structures (Computer

science) 1. Topp, William R., 1939- . 1L Title.
QA76.73.C153F67 1996 94-10482
005.7'3—dc20 CIP

Editor-in-Chief: Marcia Horton

Acquisitions Editor: Alan Apt

Production Editor: Bayani Mendoza de Leon
Developmental Editors: Elizabeth Jones/Marcia Holman
Cover Designer: Precision Graphics

Production Coordinator: Spectrum Publisher Services
Buyer: Donna Sullivan

Editorial Assistant: Shirley McGuire

© 1996 by Prentice-Hall, Inc.
A Simon & Schuster Company
Upper Saddle River, New Jersey 07458

The author and publisher of this book have used their best efforts in preparing this
book. These efforts include the development, research, and testing of the theories and
programs to determine their effectiveness. The author and publisher shall not be liable
in any event for incidental or consequential damages in connection with, or arising out
of, the furnishing, performance, or use of these programs.

All trademarks are the property of their respective owners.

All rights reserved. No part of this book may be reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

10 9 87

ISBN 0-02-420971-k

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty, Limited, Sydney
Prentice-Hall Canada, Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda, Rio de Janeiro



To
David Johnstone, Editor
He shared a vision with us. Despite his tragic death

from an act of random violence, we kept alive the
vision in our work. We hope it is a fitting tribute.



A

PREFACE

\

This book is designed to present the fundamentals of data structures from an object-
oriented perspective. The study of data structures is core to a computer science
curriculum. It provides a rich context for the study of problem-solving techniques
and program design and utilizes powerful programming constructs and algorithms.

Program Design

Problem Solving \

Data Structures

Algorithms

Programming

This book uses the versatile language C++ whose classes and object-oriented
constructs are specifically designed to efficiently implement data structures. Al-
though a number of object-oriented languages are available, C++ has developed a
preeminence due to its origins in the popular C programming language and its use
by many software vendors. We develop each data structure around the concept of
an abstract data type (ADT) that defines both data organization and data handling
operations. We are supported by the C++ language that provides a class type to
represent an ADT and to efficiently use the structures in an object.

Design of the Book

Data Structures with C++ organizes the study of data structures around collection
classes that include lists, trees, sets, graphs, and dictionaries. In the process,
we cover the fundamental topics of data structures and develop object-oriented
programming methodology. The structures and methodology are implemented in a
series of complete programs and case studies. To evaluate the efficiency of algo-
rithms, we give a simple and early introduction to Big-O notation.

Chapters 1 to 11 provide the traditional topics in a first course in data structures
(CS 2). A formal treatment of inheritance and virtual functions is given in Chapter
12 and the topics are used to implement the advanced data structures in Chapters
13 and 14. Overall, the material in Chapters 12 to 14 defines topics traditionally
covered in an advanced data structures/algorithms course (CS 7) and an advanced
programming course. We include a careful development of templates and operator

xvii



i Preface

overloading to support generalized structures. We use these powerful C++ language
constructs to simplify our use of the data structures.

A computer professional could use Data Structures with C++ as a self-study
guide to data structures, which would make it possible to understand most class
libraries, research articles, and advanced trade publications.

Chapter Descriptions

Most of the book’s chapters develop abstract data types and describe their implemen-
tation as a C++ class. The declaration of each class and its key methods also are
included in the book. In many cases, the full definition is given, yet in others, the
definition of selected class methods are given. The full implementation of the classes
are included in a program supplement.

CHAPTER 1: INTRODUCTION

This chapter is an overview chapter that introduces abstract data types and object-
oriented programming using C++. The concept of an ADT and the related attributes
of data encapsulation and information hiding are developed. This chapter also intro-
duces inheritance and polymorphism, which are formally covered in Chapter 12.

CHAPTER 2: BASIC DATA TYPES

Programming languages provide primitive numeric and character types that cover
integer and floating point numbers, character data, and user-defined enumeration
types. The primitive types combine to create array, record, string, and file structures.
This chapter describes ADTs for language types using C++ as an example.

CHAPTER 3: ABSTRACT DATA TYPES AND CLASSES

This book as a whole provides a formal study of ADTs and their representation as
C++ classes. Specifically, this chapler defines basic class concepls including data
members, constructors, and method definitions.

CHAPTER 4: COLLECTION CLASSES

A collection is a storage class with data handling tools to add, delete, or update
the items. The study of collection classes is the main focus of this book. Therefore,
this chapter provides an example of the different collection types that are presented
in the book. The chapter includes a simple early introduction to the Big-O notation,
which measures the efficiency of an algorithm. The notation is used throughout the
book to compare and contrast different algorithms. The chapter concludes with a
study of the SeqList class thal is a prototype of a general list structure.



Preface xix

CHAPTER 5: STACKS AND QUEUES

This chapter discusses stacks and queues, which are fundamental collection classes
that maintain data in LIFO (last-in first-out) and FIFO (first-in first-out) order. It
also develops the priority queue, a modified version of a queue in which the client
always deletes the item of highest priority from the list. A case study uses priority
queues Lo perform event-driven simulation.

CHAPTER 6: ABSTRACT OPERATORS

An abstract data Lype defines a set of methods to initialize and manage data. In this
chapter, we extend language-defined operators (e.g., +, *, <<, elc.) to abstract
data types. The process, called operator overloading, redefines standard operator
symbols to implement operations in the ADT. A fully developed rational number
class illustrates operator overloading and type conversion, as well as introducing
friends to overload the standard C++ I/0 operators.

CHAPTER 7: GENERIC DATA TYPES

C++ uses the template mechanism Lo provide for generic functions and classes
that support different data types. Templates provide powerful generality to our data
structures. This concept is illustrated with a template-based version of the Stack
class and ils application to infix expression evaluation.

CHAPTER 8: CLASSES AND DYNAMIC MEMORY

Dynamic data structures use memory allocated by the system at run time. They
allow us to define structures without size constraints and enhance the usability of
our classes. Their use, however, requires careful attention. We introduce the copy
constructor, overloaded assignment operator, and destructor methods, which allow
us to properly copy and assign dynamic data and then deallocate it when an object
is deleted. The power of dynamic data is illustrated with the Array, String, and Set
classes. These classes are used throughout the remainder of the book.

CHAPTER 9: LINKED LISTS

The use of lists Lo store and retrieve data is a continuing theme in the book because
lists are fundamental to the design of most data applications. This chapter introduces
linked lists, which allow for dynamic list handling. We use a twofold approach that
first develops a basic node class and creates functions for adding or deleting items
from the list. A more abstract approach creates a linked list class with a built-in
traversal mechanism to scan the items in the list. The LinkedList class is used to
implement the SeqList class and the Queue class. In each case, a linked list object
is included by composition. The approach provides a powerful tool for developing
data structures. This chapter also discusses circular and doubly linked lists that
have interesting applications. The chapter features a printer queue case study
as well.



Preface

CHAPTER 10: RECURSION

Recursion is an important problem-solving tool in both computer science and mathe-
matics. We introduce recursion and illustrate its use in a variety of contexts. A
series of applications uses recursion with mathematical formulas, combinatorics,
maze traversal, and puzzles. The Fibonacci sequence is used to compare the effi-
ciency of a recursive algorithm, an iterative algorithm, or direct calculations in
computing a term of the sequence.

CHAPTER 11: TREES

Linked lists define a set of nodes that are sequentially accessed beginning at the
head. The data structure is called a linear list. In many applications, objects exhibit
a nonlinear order in which a member may have multiple successors. In Chapter 11,
we introduce a basic nonlinear structure called a tree in which all data items
emanate from a single source—the root. A tree is an ideal structure for describing
a hierarchical structure such as a computer file system and a business reporting
chart. In this chapter, we restrict our analysis to binary trees in which each node
has, at most, two descendants. We develop the TreeNode class to implement these
trees and present applications that include the classical preorder, inorder, and
postorder scan algorithms. Binary trees find application as a list structure that
efficiently stores large volumes of data. The structure, called a binary search tree,
is implemented in the BinSTree class. The class is featured in a case study that
develops a document concordance.

CHAPTER 12: INHERITANCE AND ABSTRACT CLASSES

Inheritance is a fundamental concept in object-oriented programming. This chapter
discusses the main features of inheritance, carefully develops its implementation in
C++, and introduces virtual functions as tools that utilize the power of inheritance. It
also develops the concept of an abstract base class with pure virtual functions
Virtual functions are fundamental to object-oriented programming and are used with
subsequent topics in the book. This chapter includes the introduction of iterators
that define a uniform and general traversal mechanism for the different lists in the
book. It concludes with an example of inheritance and virtual functions to develop
heterogenous arrays and linked lists.

CHAPTER 13: ADVANCED NONLINEAR STRUCTURES

This chapter continues the development of binary trees and introduces additional
nonlinear structures. It describes array-based trees that model an array as a com-
plete binary tree. An extensive study of heaps is provided, and the concept is used
to implement the heap sort and priority queues. Although binary search trees are
usually good structures with which to implement a list, degenerate cases can be
inefficient. Data structures provide different height-balanced structures that ensure
fast average search time. Using inheritance, a new search tree class called AVL
trees is derived. The chapter concludes with an introduction to graphs that features
a series of classic algorithms.



Preface xxi

CHAPTER 14: ORGANIZING COLLECTIONS

This chapter looks at searching and sorting algorithms for general collections. In
the process, the classical array-based selection, bubble, and insertion sort algo-
rithms are developed. Our study includes the famous QuickSort algorithm. In this
book, data that is stored in internal memory is emphasized. For larger sets, data
can be stored on disk and external methods to search and sort the data can be
used. We develop the BinFile class for direct file access, and use its methods to
illustrate both the external index sequential search and the external merge sort
algorithm. A section on associative arrays, or dictionaries, generalizes the concept
of an array index.

Required Background

This book assumes the reader has completed a first course in programming and is
fluent with basic C++. Chapter 2 defines the primitive data structures of C++ and
illustrates their uses in several complete programs. This chapter can be used as a
standard for defining the C++ prerequisites. For the interested reader, the authors
provide a C+ + tutorial that defines the primitive types of the language and the syntax
for arrays, control structures, 1/0, functions, and pointers. The tutorial includes a
discussion of each topic along with examples, complete programs, and exercises.

Supplements

Complete source code listings for all classes and programs are available through
an Internet ftp connection from the authors’ institution, the University of the Pacific.
The C++ code in the book has been tested and run using the latest Borland compiler.
With very few exceptions, the programs also compile and run on a Macintosh system
using Symantec C++ and on a Unix system using GNU C+ +.

For those having Internet connection, execute an ftp to “ftp.cs.uop.edu”. Upon
connecting to the system, your login name is “anonymous” and your password is
your Internet mail address. The software is located in the directory “/pub/C++".

Readers may contact the authors directly Lo receive a copy of the tutorial. Order
information is available by electronic mail—send to “billf@uop.edu”—or by the U.S.
mail—write to Bill Topp, 456 S. Regent, Stockton, CA 95204.

The Instructor’'s Guide offers teaching tips for each chapter, answers to most
written exercises, and sample tests. The guide features solutions to many of the
programming exercises and is available from Prentice Hall.

Acknowledgments

The authors have been supported by friends, students, and colleagues throughout
the preparation of Data Structures with C++. The University of the Pacific has
generously provided resources and support to complete the project. Prentice Hall



Preface

offered a dedicated team of professionals who handled the book design and produc-
tion. We are especially grateful to editors Elizabeth Jones, Bill Zobrist, and Alan
Apt, and to production editor Bayani de Leon. Production was jointly implemented
by Spectrum Publisher Services and Prentice Hall. We were greally assisted by Kelly
Ricci and Kristin Miller at Spectrum.

Students have offered valuable criticism of the manuscript by giving us explicit
feedback or unsolicited blank stares. Our reviewers offered guidance for early writing
of the manuscript, providing detailed comments on both the content and the pedagog-
ical approach. We took most of their recommendations into account. Special thanks
€0 to Hamid R. Arabnia, University of Georgia; Rhoda A. Baggs, Florida Institute of
Technology; Sandra L. Bartlett, University of Michigan—Ann Arbor; Richard T. Close,
U.S. Coast Guard Academy; David Cook, U.S. Air Force Academy; Charles J. Dowling,
Catonsville (Baltimore County) Community College; David J. Haglin; Mankato State
University; Jim Murphy, California State University—Chico; and Herbert Schildt. Two
colleagues, Ralph Ewton at the University of Texas—El Paso, and Douglas Smith at
the University of the Pacific made extensive contributions. Their insights and support
were invaluable to the authors and grealtly improved the final design of the book.

William Ford
William Topp



Y

CONTENTS

Preface xvii

CHAPTER 1 INTRODUCTION 1

1.1

1.4

—
(=>le)|

1.7

1.8
1.9

Abstract Data Types 2

ADT Format 3

C++ Classes and Abstract Types 6
Encapsulation and Information Hiding 7
Message Passing 7

Objects in C++ Applications 8

Application: The Circle Class 8

Object Design 11

Objects and Composition 11

J++ Geometric Classes 13

Objects and Inheritance 14

Inheritance in Programming 15

Ordered Lists and Inheritance 18

Software Reusability 19

SeqList and OrderedList Class Specifications 19
Applications with Class Inheritance 21
Object-Oriented Program Design 22

Problem Analysis/Program Definition 23
Design 23

Coding 24

Testing 24

Program Design Illustration: A Dice Graph 24
Program Testing and Maintenance 31

Object Testing 31

Control Module Testing 31

Program Maintenance and Documentation 32
The C++ Programming Language 32
Abstract Base Classes and Polymorphism 33
Polymorphism and Dynamic Binding 34

Written Exercises 36

A

vii



viii Contents

CHAPTER 2 BASIC DATATYPES 38

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

Integer Types 39

Computer Storage of Integers 41

Data in Memory 42

C++ Representation of Integers 43
Character Types 43

ASCII Characters 44

Real Data Types 45

Real Number Representations 46
Enumerated Types 48

Implementing C++ Enumerated Types 49
Pointers 49

Pointer ADT 49

Pointer Values 51

The Array Type 52

The Built-In C++ Array Type 52
Storage of One-Dimensional Arrays 53
Array Bounds 54

Two-Dimensional Arrays 55

Storage of Two-Dimensional Arrays 57
String Literals and Variables 58

C++ Strings 61

Application: Reversing Names 63
Records 65

C++ Structures 66

Files 66

C++ Stream Hierarchy 69

Array and Record Applications 72
Sequential Search 72

Exchange Sort 75

Counting C++ Reserved Words 77

Written Exercises 80
Programming Exercises 88

CHAPTER 3 ABSTRACT DATA TYPES AND CLASSES

3.1

The User Type CLASS 92

Class Declaration 92
Constructor 94

Object Declaration 94

Class Implementation 95
Implementing a Constructor 96
Building Objects 97



3.2

3.3

3.4

3.5
3.6

Sample Classes 101

The Temperature Class 101

The Random Number Class 104
Objects and Information Passing 110
An Object as a Return Value 110

An Object as a Function Parameter 110
Arrays of Objects 111

The Default Constructor 112

Multiple Constructors 113

Case Study: Triangular Matrices 116
Upper Triangular Matrix Properties 117

Written Exercises 126
Programming Exercises 131

CHAPTER 4 COLLECTION CLASSES 141

4.1

4.2

4.3

4.4

4.5

Describing Linear Collections 144
Direct Access Collections 145
Sequential Access Collections 146
Generalized Indexing 150

Describing Nonlinear Collections 151
Group Collections 152

Analysis of Algorithms 154
Performance Criteria 154

Common Orders of Magnitude 159
The Sequential and Binary Search 160
Binary Search 161

The Basic Sequential List Class 167
List Modification Methods 170

Written Exercises 178
Programming Exercises 181

CHAPTER 5 STACKS AND QUEUES 184

5.1
5.2
5.3

5.4
5.5
5.6

5.7

Stacks 185

The Stack Class 188

Expression Evaluation 197

Postfix Evaluation 198

Application: A Postfix Calculator 199
Queues 204

The Queue Class 207

Priority Queues 221

A Priority Queue Class 223

Case Study: Event-Driven Simulation 231

Contents



x Contents

Written Exercises 245
Programming Exercises 249

CHAPTER 6 ABSTRACT OPERATORS 253

6.1

6.2

6.3
6.4

6.5

6.6

6.7

Describing Operator Overloading 255
Client-Defined External Functions 255

Class Members 256

Friend Functions 259

Rational Number System 260

Representing Rational Numbers 261

Rational Number Arithmetic 261

Rational Number Conversion 262

The Rational Class 263

Rational Operators as Member Functions 265
Implementing the Rational Operators 266
The Rational Stream Operators as Friends 267
Implementing Rational Stream Operators 268
Converting Rational Numbers 269

Conversion to Object Type 269

Conversion from Object Type 271

Using Rational Numbers 272

Written Exercises 277
Programming Exercises 284

CHAPTER 7 GENERIC DATA TYPES 289

7.1

7.2

7.3
7.4

Template Functions 290
Template-Based Sort 294

Template Classes 294

Defining a Template Class 294
Declaring Template Class Objects 295
Defining Template Class Methods 295
Template List Classes 297

Infix Expression Evaluation 299

Written Exercises 308
Programming Exercises 309

CHAPTER 8 CLASSES AND DYNAMIC MEMORY

8.1

Pointers and Dynamic Data Structures 315
The Memory Allocation Operator New 315

313



Contents xi

Dynamic Array Allocation 316
The Memory Deallocation Operator Delete 317
8.2 Dynamically Allocated Objects 318
Deallocating Object Data: The Destructor 319
8.3 Assignment and Initialization 322
Assignment Issues 322
Overloading the Assignment Operator 324
The This Pointer 325
Initialization Issues 325
Creating a Copy Constructor 326
8.4 Safe Arrays 329
The Array Class 329
Memory Allocation for the Array Class 331
Array Bounds Checking and the Overloaded [] Operator 332
Converting an Object to a Pointer 333
Using the Array Class 335
8.5 A String Class 337
String Class Implementation 343
8.6 Pattern Matching 349
The Find Process 350
Pattern Matching Algorithm 350
Analysis of the Pattern Matching Algorithm 355
8.7 Integral Sets 356
Sets of Integral Types 356
C++ Bit Handling Operators 357
Representing Set Elements 360
The Sieve of Eratosthenes 363
Set Class Implementation 366
Written Exercises 369
Programming Exercises 379

CHAPTER 9 LINKED LISTS 383

Describing a Linked List 386
Chapter Overview 386
9.1 The Node Class 387
Declaring a Node Type 387
Implementing the Node Class 390
9.2 Building Linked Lists 393
Creating a Node 393
Inserting a Node: InsertFront 393
Traversing a Linked List 394
Inserting a Node: InsertRear 397
Application: Student Graduation List 401



xii Contents

Creating an Ordered List 404
Application: Sorting with Linked Lists 406
9.3  Designing a Linked List Class 409
Linked List Data Members 409
Linked List Operations 410
9.4 The LinkedList Class 413
9.5 Implementing the LinkedList Class 421
9.6 Implementing Collections with Linked Lists 429
Linked Queues 429
Implementing Queue Methods 431
Linked SeqList Class 432
Implementing SeqList Data Access Methods 433
Application: Comparing SeqList Implementations 434
9.7 Case Study: A Print Spooler 436
Implementing the Spooler Update Method 439
Spooler Evaluation Methods 440
9.8 Circular Lists 443
Circular Node Class Implementation 445
Application: Solving the Josephus Problem 447
9.9  Doubly Linked Lists 450
Application: Doubly Linked List Sort 452
DNode Class Implementation 455
9.10 Case Study: Window Management 457
The Window List 458
WindowList Class Implementation 461
Written Exercises 465
Programming Exercises 474

CHAPTER 10 RECURSION 480

10.1 The Concept of Recursion 481
Recursive Definitions 483
Recursive Problems 484

10.2 Designing Recursive Functions 489

10.3 Recursive Code and the Runtime Stack 494
The Runtime Stack 494

10.4 Problem-Solving with Recursion 497
Binary Search 497
Combinatorics: The Committee Problem 500
Combinatorics: Permutations 503
Maze Handling 514
Maze Class Implementation 518

10.5 Evaluating Recursion 521



Contents

Written Exercises 527
Programming Exercises 530

CHAPTER 11 TREES 533

Tree Terminology 535
Binary Trees 537

11.1 Binary Tree Structure 540
Designing a TreeNode Class 540
Building a Binary Tree 543

11.2 Designing TreeNode Functions 544
Recursive Tree Traversals 546

11.3 Using Tree Scan Algorithms 550
Application: Visiting Tree Nodes 550
Application: Tree Print 552
Application: Copying and Deleting Trees 553
Application: Upright Tree Printing 559

11.4 Binary Search Trees 564
The Key in a Binary Search Tree Node 566
Operations on a Binary Search Tree 567
Declaring a Binary Search Tree ADT 568

11.5 Using Binary Search Trees 573
Duplicate Nodes 575

11.6 The BinSTree Implementation 578
List Operations 579

11.7 Case Study: Concordance 590

Written Exercises 596

Programming Exercises 602

CHAPTER 12 INHERITANCE AND ABSTRACT CLASSES 606

12.1 A View of Inheritance 607
Class Inheritance Terminology 609

12.2 Inheritance in C++ 610
Constructors and Derived Classes 612
What Cannot Be Inherited 619

12.3 Polymorphism and Virtual Functions 620
Demonstrating Polymorphism 622
Application: Geometric Figures and Virtual Methods 626
Virtual Methods and the Destructor 629

12.4 Abstract Base Classes 630

xiii



