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Chapter 9

Boundary Value Problems for Partial
Differential Equations

9.1 Several Important Partial Differential Equations

Many physical phenomena are characterized by linear partial differential equa-
tions. Such equations are attractive to study because (a) principles of superposition
apply in the sense that linear combinations of component solutions can often be used
to build more general solutions and (b) finite difference or finite element approxima-
tions lead to systems of linear equations amenable to solution by matrix methods.
The accompanying table lists several frequently encountered equations and some ap-
plications. We only show one- or two-dimensional forms, although some of these
equations have relevant applications in three dimensions.

In most practical applications the differential equations must be solved within a
finite region of space while simultaneously prescribing boundary conditions on the
function and its derivatives. Furthermore, initial conditions may exist. In dealing
with the initial value problem, we are trying to predict future system behavior when
initial conditions, boundary conditions, and a governing physical process are known.
Solutions to such problems are seldom obtainable in a closed finite form. Even when
series solutions are developed, an infinite number of terms may be needed to pro-
vide generality. For example, the problem of transient heat conduction in a circular
cylinder leads to an infinite series of Bessel functions employing characteristic val-
ues which can only be computed approximately. Hence, the notion of an #¥xactl
solution expressed as an infinite series of transcendental functions is deceiving. At
best, we can hope to produce results containing insignificantly small computation
errors.

The present chapter applies eigenfunction series to solve nine problems. Examples
involving the Laplace, wave, beam, and heat equations are given. Nonhomogeneous
boundary conditions are dealt with in several instances. Animation is also provided
whenever it is helpful to illustrate the nature of the solutions.
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Equation Equation | Applications
Name

Ugg + Uyy = QU Heat Transient heat conduction

Ugg T Uyy = QU Wave Transverse vibrations of membranes
and other wave type phenomena

Ugg + Uyy = 0 Laplace Steady-state heat conduction and
electrostatics

Uz + tyy = flz,9) Poisson Stress analysis of linearly elastic
bodies

Ugg + Uyy + w2u =0 Helmholtz | Steady-state harmonic vibration
problems

Elyzzze = —Apyw + f(z,t) | Beam Transverse flexural vibrations of
elastic beams

9.2 Solving the Laplace Equation inside a Rectangular Region

Functions which satisfy L aplacetHequation are encountered often in practice. Such
functions are called harmonic; and the problem of determining a harmonic function
subject to given boundary values is known as the Dirichlet problem [119]. In a
few cases with simple geometries, the Dirichlet problem can be solved explicitly.
One instance is a rectangular region with the boundary values of the function being
expandable in a Fourier sine series. The following program employs the FFT to con-
struct a solution for boundary values represented by piecewise linear interpolation.
Surface and contour plots of the resulting field values are also presented.

The problem of interest satisfies the differential equation

0%u  8%u
@+8—y2=0 , O<z<a , O<y<b
with the boundary conditions of the form
u(z,0) = F(z) 0<z<a,
u(z,b) = G(z) 0O<z<a,
u(0,y)=Ply) , 0<y<b,
u(a,y) = Q(y) O<y<b.

The series solution can be represented as

u(@,y) =Y faan(2,y) + gnan(z,b — ) + prbn(2,y) + drbula — z,7)

n=1
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where
an(z,y) = sin [?] sinh [M} /sinh ["T’”’] :

ba(z, ) = simh | 72D | g [—"”y] /sinh [Tﬂ] ,
b b b
and the constants fy,, gm. Pn, and g, are coefficients in the Fourier sine expansions
of the boundary value functions. This implies that

F(z) = i fnsin [H—ZE] , G(z) = ign sin [?] y
n=1 n=1

P(y) = ipnsin [n_7bry] , Qly) = iqnsin [n_;ry} .
n=1 n=1

The coefficients in the series can be computed by integration as

f,,:%/an(z)sin["aﬂ] dzr gn=§/0ac(z)sm["aﬂ] dz,

b b
po=z [ PWsin[5Y] dy, an=> [ Qusin Y] ay,
0 aJo b
or approximate coefficients can be obtained using the FFT. The latter approach is
chosen here and the solution is evaluated for an arbitrary number of terms in the
series.

The chosen problem solution has the disadvantage of employing eigenfunctions
that vanish at the ends of the expansion intervals. Consequently, it is desirable to
combine the series with an additional term allowing exact satisfaction of the corner
conditions for cases where the boundary value functions for adjacent sides agree.
This implies requirements such as F'(a) = Q(0) and three other similar conditions.
It is evident that the function

up(z,y) = 1 + cox + c3y + cazy

is harmonic and varies linearly along each side of the rectangle. Constants ¢, - , ¢4
can be computed to satisfy the corner values and the total solution is represented as
up plus a series solution involving modified boundary conditions.

The following program laplarec solves the Dirichlet problem for the rectangle.
Function values and gradient components are computed and plotted. Functions used
in this program are described below. The example data set defined in the driver
program was chosen to produce interesting surface and contour plots. Different
boundary conditions can be handled by slight modifications of the input data. In
this example 100 term series are used. Figure 9.1 through Figure 9.4 show function
and gradient components, as well as a contour plot of function values. Readers may
find it instructive to run the program and view these figures from different angles
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laplarec | inputs data, calls computation modules, and
plots results

datafunc | defines an example datacase

ulinbc particular solution for linearly varying
boundary conditions

recseris | sums the series for function and gradient val-

ues
sincof generates coefficients in a Fourier sine series
lintrp piecewise linear interpolation function allow-

ing jump discontinuities

using the interactive figure rotating capability provided in MATLAB. Note that the
figure showing the function gradient in the x direction used view([225,20]) to show
clearly the jump discontinuity in this quantity.

=
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HARMONIC FUNCTION IN A RECTANGLE

U(X,Y)

yaxs x axis

Figure 9.1: Surface Plot of Function Values

Contour Plot
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Figure 9.2: Contour Plot of Function Values
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DU(X,Y)/DX

DU(X,Y)/DY
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DERIVATIVE OF U(X,Y) IN THE X DIRECTION

y axis
X axis

Figure 9.3: Function Derivative in the x Direction

DERIVATIVE OF U(X,Y) IN THE Y DIRECTION
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Figure 9.4: Function Derivative in the y Direction
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MATLAB Example

Program laplarec

function [u,ux,uy,X,Y]=laplarec(...
ubot,utop,ulft,urht,a,b,nx,ny,N)

% [u,ux,uy,X,Y]=laplarec(...
ubot,utop,ulft,urht,a,b,nx,ny,N)

%» This program evaluates a harmonic function and its
% first partial derivatives in a rectangular region.
% The method employs a Fourier series expansion.

o O~ X @@ B e
==

1. o ubot - defines the boundary values on the bottom
1: b side. This can be an array in which

12: ubot(:,1) is x coordinates and ubot(:,2)

13 is function values. Values at intermediate
14 b points are obtained by piecewise linear

15 interpolation. A character string giving
16: the name of a function can also be used.
17 h Then the function is evualuated using 200
18 points along a side to convert ubot to an
19: array. Similar comments apply for utop,

20: ulft, and urht introduced below.

21: o utop - boundary value definition on the top side
22. /o ulft - boundary value definition on the left side
23 /o urht - boundary value definition on the right side
24 % a,b - rectangle dimensions in x and y directions
25 / nx,ny - number of x and y values for which the

26: o solution is evaluated

2. fh N - number of terms used in the Fourier series
28 % U - function value for the solution

20: % ux,uy - first partial derivatives of the solution
ao: h X,Y - coordinate point arrays where the solution
a1 is evaluated

32%

functions used: datafunc ulinbc
recseris ftsincof

w W
I
>N
(=]
0
o
H
B

w
o

. disp(’ )
disp(’SOLVING THE LAPLACE EQUATION IN A RECTANGLE’)
. disp(’ ?)

BoWw W W W

. if nargin==0
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41: disp(...

42: ’Give the name of a function defining the data’)
a3: datfun=input(...

44 ’(try datafunc as an example): > 7 ’,’s’);

45: [ubot,utop,ulft,urht,a,b,nx,ny,N]=feval (datfun);

46: end

4T:

s8: /» Create a grid to evaluate the solution

40: x=1inspace(0,a,nx); y=linspace(0,b,ny);

so. [X,Y]=meshgrid(x,y); d=(at+b)/1e6;

s1: xd=linspace(0,a,201)’; yd=linspace(0,b,201)’;
52:

s3: /» Check whether boundary values are given using
s¢ /o external functions. Convert these to arrays
55:

se: if isstr(ubot)

57 ud=feval (ubot,xd); ubot=[xd,ud(:)];

s8: end

so. if isstr(utop)

60: ud=feval (utop,xd); utop=[xd,ud(:)];

61: end

622 if isstr(ulft)

63: ud=feval (ulft,yd); ulft=[yd,ud(:)];

64: end

65 if isstr(urht)

66: ud=feval (urht,yd); urht=[yd,ud(:)];

67 end

68:

6o: /o Determine function values at the cormers

70: ub=interpi (ubot (:,1) ,ubot(:,2),[d,a-d]);

7. ut=interpl (utop(:,1) ,utop(:,2),[d,a-d]);

72 ul=interpl (ulft(:,1) ,ulft(:,2),[d,b-d]);

73 ur=interpl (urht(:,1) ,urht(:,2),[d,b-d]);

74 U=[ul(1)+ub(1) ,ub(2)+ur (1) ,ur(2)+ut(2),...

75: ut(1)+ul(2)1/2;

76:

7. % Obtain a solution satisfying the corner
78: /o values and varying linearly along the sides
79:

go: [v,vx,vy]=ulinbc(U,a,b,X,Y);

81:

2. /o Reduce the corner values to zero to improve
s /o behavior of the Fourier series solution

84 /» near the corners

85:
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86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
a7:
98:
99:
100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
: colorbar, shg, pause
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:

f=inline (’u0+(ul-u0)/L*x’,’x’,’u0’,’ul’,’L’);
ubot (:,2)=ubot (:,2)-f (ubot(:,1),U(1),U(2),a);
utop(:,2)=utop(:,2)-f (utop(:,1),U(4),U(3),a);
ulft(:,2)=ulft(:,2)-f(ulft(:,1),0(1),U(4),b);
urht (:,2)=urht(:,2)-f (urht(:,1),0(2),U(3),b);

% Evaluate the series and combine results
% for the various component solutions

[ub,ubx,uby]=recseris(ubot,a,b,1,x,y,N);
[ut,utx,uty]l=recseris(utop,a,b,2,x,y,N);
[ul,ulx,uly]=recseris(ulft,a,b,3,x,y,N);
[ur,urx,ury]=recseris(urht,a,b,4,x,y,N);
u=v+ub+ut+ul+ur; ux=vx+ubx+utx+u1x+urx;
uy=vy+uby+uty+uly+ury; close

% Show results graphically

surfc(X,Y,u), xlabel(’x axis’), ylabel(’y axis’)
zlabel ("U(X,Y)?)

title (’HARMONIC FUNCTION IN A RECTANGLE’)

shg, pause

% print -deps laprecsr

contour (X,Y,u,30); title(’Contour Plot’);
xlabel(’x direction’); ylabel(’y direction’);

% print -deps laprecnt

surf(X,Y,ux), xlabel(’x axis’), ylabel(’y axis’)
zlabel (°DU(X,Y)/DX’)

title (’DERIVATIVE OF U(X,Y) IN THE X DIRECTION’)
shg, pause

% print -deps laprecdx

surf(X,Y,uy), xlabel(’x axis’), ylabel(’y axis’)
zlabel (°’DU(X,Y)/DY’)

title (’DERIVATIVE OF U(X,Y) IN THE Y DIRECTION’)
% print -deps laprecdy

shg

‘/. o

function [ubot,utop,ulft,urht,a,b,...
nx,ny,N]=datafunc
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