fox&
mMcdonald

fluid,
mechanics




introduction
to

fluid

mechanics

ROBERT W. FOX
ALAN T. McDONALD

School of Mechanical Engineering
Purdue University

John Wiley & Sons, Inc.
New York

London

Sydney

Toronto



Copyright © 1973, by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

No part of this book may be reproduced by any means, nor
transmitted, nor translated into a machine language with-
out the written permission of the publisher.

Library of Congress Cataloging in Publication Data:

Fox, Robert W. 1934—
Introduction to fluid mechanics.

1. Fluid mechanics. |. McDonald, Alan T., joint author.
TA357.F69 532 73-5842
ISBN 0-471-27035-0

Printed in the United States of America

10987654321

I1. Title.



introduction to fluid mechanics



preface

This textbook was written for an introductory fluid mechanics course at the junior
level. The decision to begin writing our own book reflected our dissatisfaction with
existing textbooks. The decision to complete it resulted from our experience with
earlier versions that were used in our own classes at Purdue University during the
past three years.

Our objective has been to make the material interesting, easy to read, and easy
to understand. All of it has been tested in the classroom by two generations of
students to ensure that we have reached these goals. Thus we are convinced that
students who read the book will understand it.

Because the material is easy to understand, the instructor can depart from con-
ventional “lecture” teaching techniques. He can use classroom time to bring in
current outside material, to solve example problems, and to explain the complexities
of the assigned homework problems. Thus he can use each class period in the
manner that seems most appropriate. Since there is no quantum of material that
must be covered during a certain hour, the instructor can spend time in reviewing
or amplifying any area in which he senses that students are having difficulty.

This flexibility permits the instructor to have much more interaction with the
class than is possible through rigid adherence to a fixed schedule of formal lectures.
It also permits the student to relate to the instructor and the material, since the
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student knows that class time is available to answer questions that are currently
“bugging” him. These positive features are explained in Section 1-5, "Note to
Students.”

The material has been carefully selected. It includes all of the topics that we feel
can be covered thoroughly in a 15-week (one-semester) course with three 50-
minute lectures per week. At Purdue, we cover the entire book, with the exception
of the starred sections. A laboratory (meeting two hours each week) is used for
demonstrations, films, and simple experiments. A sample course outline is included
in the Solutions Manual that accompanies this book. Desirable prerequisites are
introductory courses in rigid body dynamics and heat power or thermodynamics,
and mathematics through integral calculus. The thermodynamics course may be
taken concurrently.

We believe that people—students and teachers alike—Ilearn by doing; that is,
by applying the principles they have learned to a variety of problems. Throughout
the book, the emphasis is on starting from fundamentals to develop solutions.
This approach is also emphasized for student problem solving, and we recommend
a standard format for homework and examination solutions (see Section 1-5).
This format requires that the problem statements be read and understood before
the solution is attempted. It requires that basic equations be written and assump-
tions listed before numerical calculations are started. Thus, the student is forced
to think about both the problem and the equations before he becomes involved
in the detailed work of numerical substitution.

The text contains many example problems. We selected them carefully to illus-
trate matters that, in our experience, have troubled students. Solutions to these
examples have been prepared to demonstrate good solution technique and to
explain troublesome points. A different physical layout with wider margins has
been used to make these solutions as visible and legible as possible.

For further clarification and demonstration of basic principles in fluid mechanics,
many fine instructional films and film loops are available. We have referred to these
films in the text where their use is appropriate; a complete list of suppliers and
titles is included in Appendix C.

When our students have finished this course, we expect them to be able to apply
the basic equations to a variety of problems, including new problems that they
have not encountered before. We also emphasize physical understanding through-
out, in order to make students aware of the variety of phenomena that can occur
in fluid flow situations. By minimizing the number of “magic formulas” and
emphasizing the fundamental approach, we believe that students will feel more
confident in their ability to apply the material and will be able to reason out solu-
tions to rather challenging problems.

Our experience with this material (in the form of notes) over a three-year period
at Purdue University has been very encouraging. However, we recognize that no
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single approach can satisfy all needs. Therefore we welcome criticisms and
suggestions from interested readers or users of this book.

We are indebted to several of our colleagues, especially to John A. Brighton of
the Pennsylvania State University and James P. Johnston of Stanford University,
for providing constructive and cogent reviews of an earlier version of this book.
We have incorporated many of their suggestions. However, we are responsible for
errors of fact or omission.

ALAN T. McDONALD
ROBERT W. FOX
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chapter 1

introduction

In beginning the study of any subject, a number of questions come to mind
immediately. Among those which a student in the first course in fluid mechanics
may well wonder about are the following:

What is fluid mechanics all about?

Why do | have to study it?

Why should | want to study it?

How does it relate to subject areas with which | am already familiar?

In this chapter we will try to provide at least a qualitative answer to these and
similar questions and thus an introduction to the subject.

1-1 Definition of a Fluid

Since fluid mechanics is a science dealing with the behavior of fluids at rest and
in motion, it is logical to begin our study of the subject with a definition of the
term fluid.

A fluid is a substance that deforms continuously under the application of a
shearing (i.e. tangential) stress no matter how small the shearing stress.

Thus, according to the physical forms in which matter exists, fluids comprise
the liquid and gas (or vapor) phase. The distinction between a fluid and the



remaining possible state of matter (i.e. the solid state) is clear if one compares a
fluid as defined above with the behavior of a solid. A solid is a substance that
deforms when a shear stress is applied, but it does not continue to deform.

In Fig. 1.1 the behavior of a solid (Fig. 1.1a) and a fluid (Fig. 1.16) under the
action of a constant shear force are contrasted. In Fig. 1.1a the shear force is
applied to the solid through the upper of two plates to which the solid has been
bonded. When the shear force is applied to the plate, the block is deformed as
shown. From our previous work in mechanics, we know that, provided the elastic
limit of the solid material is not exceeded, the deformation is directly proportional
to the applied shear stress, 7, where t = F/A and A is the area of the surface in
contact with the plate.

Now let us repeat the experiment using a fluid between the plates. In order
to observe the behavior of the fluid we use a dye marker to outline a fluid element
as shown by the solid lines (Fig. 1.16). Upon application of the force, F, to the
upper plate, we notice that the fluid element continues to deform as long as the
force is applied. The shape of the fluid element, at successive instants of time,
t, > t, >1t,. is shown by the dashed lines in Fig. 1.16, which represent the
positions of the dye markers. Note also that the fluid in direct contact with the
solid boundary has the same velocity as the boundary itself; that is, there is no
slip at the boundary. This is an experimental fact based on numerous observations
of fluid behavior.!

(a) (b)

Fig. 1.1 Behavior of (a) solid and (b) fluid, under the action of a constant shear force.

Because a fluid deforms continuously under the application of a shear stress,
we may alternatively define a fluid as a substance which, when at rest, cannot
sustain a shear stress.

' The no slip condition is demonstrated in the film loops S-FMOO03, Shear Deformation of Viscous
Fluids. and S-FMOO6. Boundary Layer Formation. These loops were produced by Educational Services.
Inc.. Watertown, Mass., and the National Committee for Fluid Mechanics Films. The films are distributed
by Encyclopaedia Britannica Educational Corporation. (A complete list of fluid mechanics film titles and
sources is given in Appendix C.)
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1-2 Scope of Fluid Mechanics

Having defined a fluid and noted the characteristics that distinguish it from a
solid, we might ask the question: “Why study fluid mechanics?”” One answer is,
“It is a required course in the curriculum!” While this may be a true and logical
answer, it is not the only logical answer.

A knowledge and understanding of the basic principles and concepts of fluid
mechanics are essential in the analysis and design of any system in which a fluid
is the working medium. The design of virtually all means of transportation requires
an application of the principles of fluid mechanics. Included are aircraft for
both subsonic and supersonic flight, ground effect machines, hovercraft (now in
service for channel crossings between France and England), vertical takeoff and
landing aircraft requiring minimum runway length, surface ships, submarines, and
automobiles. In recent years automobile manufacturers have given more consider-
ation to aerodynamic design. This has been true for some time for the designers
of both racing cars and boats. The design of propulsion systems for space flight
as well as for toy rockets is based on the principles of fluid mechanics. The
collapse of the Tacoma Narrows Bridge some years ago is evidence of the possible
consequences of neglecting the basic principles of fluid mechanics.? It is common-
place today to perform model studies to determine the aerodynamic forces on
and flow fields around buildings and structures. These include studies of sky-
scrapers, baseball stadiums, smokestacks, and shopping plazas.

The design of all types of fluid machinery including pumps, fans, blowers,
compressors, and turbines clearly requires a knowledge of the basic principles
of fluid mechanics. Lubrication is an area of considerable importance in fluid
mechanics. Heating and ventilating systems for private homes, large office buildings,
and underground tunnels, and the design of pipeline systems are further examples
of technical problem areas requiring a knowledge of fluid mechanics. The circu-
latory system of the body is essentially a fluid system. It is not surprising then that
the design of artificial hearts, heart-lung machines, breathing aids, and other such
devices must rely on the basic principles of fluid mechanics.

Even some of our recreational endeavors are directly related to fluid mechanics.
The slicing and hooking of golf balls can be explained by the principles of fluid
mechanics (although they can be corrected only by a golf pro!).

The list of applications of the principles of fluid mechanics could be extended
considerably. Our main point here is that fluid mechanics is not a subject studied
for purely academic interest; rather, it is a subject with widespread importance
both in our every-day experiences and in modern technology.

Clearly we cannot hope to consider in detail even a small percentage of these
and other specific problems of fluid mechanics. Instead. the purpose of this text

* For dramatic evidence of aerodynamic forces in action, see the Ohio State University film, Collapse
of the Tacoma Narrows Bridge
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is to present the basic laws and associated physical concepts that provide the
basis or starting point in the analysis of any problem in fluid mechanics.

1-3 Basic Equations

An analysis of any problem in fluid mechanics necessarily begins, either directly
or indirectly, with statements of the basic laws governing the fluid motion. These
laws, which are independent of the nature of the particular fluid, are:

(a) Conservation of mass.

(b) Newton's second law of motion.
(c) The first law of thermodynamics.
(d) The second law of thermodynamics.

Clearly not all of these laws are always required in the solution of any one problem.
In some problems, it is necessary to bring into the analysis additional relations,
in the form of constitutive equations describing the behavior of physical properties
of fluids under given conditions.

It is obvious that the basic laws with which we shall deal are the same as those
used in mechanics and thermodynamics. Our task will be to formulate these laws
in forms suitable for solution of fluid flow problems and to apply them to the
solution of a wide variety of problems.

It should be emphasized that there are, as we shall see, many apparently simple
problems in fluid mechanics that cannot be solved by totally analytical means.
In such cases we must resort to experiments and experimental observations.

1—4 Methods of Analysis

As we have indicated, the basic laws that are employed in the analysis of problems
in fluid mechanics are the same ones that you have used previously in your earlier
studies of thermodynamics and basic mechanics. From these earlier studies you
will recall that the first step in solving a problem is to define the system that you
are attempting to analyze. In basic mechanics, extensive use was made of the
free body diagram. In thermodynamics you referred to the system under analysis
as either a closed system or an open system. In this text we shall employ the
terms system and control volume. The importance of defining the system or
control volume to which the basic equations are to be applied in the analysis of
a problem cannot be overemphasized. At this point it is wise to review the basic
difference between a system and a control volume.

1—-4.1 SYSTEM AND CONTROL VOLUME

A system is defined as a fixed, identifiable quantity of mass; the system boundaries
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