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Preface

Groups are algebraic objects, consisting of a set with a binary operation
that satisfies a short list of required properties: the binary operation
must be associative; there is an identity element; and every element has
an inverse. Presenting groups in this formal, abstract algebraic manner is
both useful and powerful. Yet it avoids a wonderful geometric perspective
on group theory that is also useful and powerful, particularly in the study
of infinite groups. This perspective is hinted at in the combinatorial
approach to finite groups that is often seen in a first course in abstract
algebra. It is my intention to bring the geometric perspective forward,
to establish some elementary results that indicate the utility of this
perspective, and to highlight some interesting examples of particular
infinite groups along the way. My own bias is that these groups are just
as interesting as the theorems.

The topics covered in this book fit inside of “geometric group the-
ory,” a field that sits in the impressively large intersection of abstract
algebra, geometry, topology, formal language theory, and many other
fields. I hope that this book will provide an introduction to geometric
group theory at a broadly accessible level, requiring nothing more than
a single-semester exposure to groups and a naive familiarity with the
combinatorial theory of graphs.

The chapters alternate between those devoted to general techniques
and theorems (odd numbers) and brief chapters introducing some of
the standard examples of infinite groups (even numbers). Chapter 2
presents a few groups generated by reflections; Chapter 4 presents the
Baumslag—Solitar group BS(1,2) in terms of linear functions; Chapter 6
is the Gupta—Sidki variant of Grigorchuk’s group; the Lamplighter group
is discussed in Chapter 8; and Thompson’s group F is the subject of
Chapter 10. When I taught this material at Lafayette College I referred

ix



b Preface

to the material in these even numbered chapters as “field trips to the
Zoo of Infinite Groups.”

The first chapter should be relatively easy to work through, as it
reviews material on groups (mainly finite groups), group actions, and
the combinatorial theory of graphs. It establishes quite a bit of notation
and introduces the construction of Cayley graphs. While some material
in this chapter may be new to the reader, most of it should seem to be
a repackaging of ideas that she or he has previously encountered.

Chapter 3 is an introduction to free groups and free products of
groups. Chapters 5 and 7 are devoted to connections between finitely
generated groups and formal language theory. Chapters 9 and 11 deal
with the geometry of infinite groups, with Chapter 9 focusing on what
might be called the “fine geometry” of Cayley graphs, while Chapter 11
treats what is called the large-scale geometry of groups.

While no background beyond elementary group theory is necessary for
this book, a broader undergraduate exposure to mathematics is certainly
helpful. My experience in the classroom indicates that the material in
Chapter 7 is demanding for people who have not previously encountered
formal language theory. Similarly Chapter 11 is easier for people who
have had a course in real analysis. Because hyperbolic geometry is not
a standard undergraduate topic, Gromov’s theory of hyperbolic groups
does not appear in this book. Similarly, because algebraic topology is
not a standard undergraduate topic, I have avoided fundamental groups
and covering spaces.

There are two forms of exercises in this book. A few exercises are
embedded within the chapters. These should be done, at least at the
level of the reader convincing themselves they know how to do them,
while reading through the material. There are also end-of-chapter ex-
ercises that are arranged in the order that material is presented in the
chapter. Some of these end-of-chapter exercises are challenging but most
are reasonably accessible.

Groups, Graphs and Trees was developed from notes used in two under-
graduate course offerings at Lafayette College, and it can certainly serve
as a primary text for an advanced undergraduate course. It should also
be useful as a text for a reading course and as a gentle introduction to
geometric group theory for mathematicians with a broader background
than this. An undergraduate course that attempted to cover this text,
omitting no details, in one semester, would have to move at a rather
brisk pace. The critical background information is contained in the first
five chapters and those should not be trimmed. With a bit of forethought



Preface xi

an instructor can cover much of the rest of this book, if for example the
material in Chapter 7 or Chapter 11 is presented more as a colloquium
than as course material. My own hope is that various classes will find
the space in their semester to pursue tangents of interest to them, and
then let me know the results of their exploration.

I have many people to thank. My wife Trisha and son Robert were
unreasonably supportive of this project. Many students provided import-
ant feedback as I fumbled through the process of presenting this bit of
advanced mathematics at an elementary level: George Armagh, Kari
Barkley, Jenna Bratz, Jacob Carson, Joellen Cope, Joe Dudek, Josh
Goldstein, Ekaterina Jager, Brian Kronenthal, Rob McEwen, and
Zachary Reiter. I also benefited from extensive feedback given by my
colleagues Ethan Berkove and Jon McCammond. Finally, a number of
anonymous referees provided comments on various draft chapters. I was
impressed by the fact that there was no intersection between the com-
ments provided by students, the comments provided by colleagues, and
the anonymous referees!
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1
Cayley’s Theorems

As for everything else, so for a mathematical theory: beauty can be perceived
but not explained.

—Arthur Cayley

An introduction to group theory often begins with a number of examples
of finite groups (symmetric, alternating, dihedral, ...) and constructions
for combining groups into larger groups (direct products, for exam-
ple). Then one encounters Cayley’s Theorem, claiming that every finite
group can be viewed as a subgroup of a symmetric group. This chapter
begins by recalling Cayley’s Theorem, then establishes notation, termino-
logy, and background material, and concludes with the construction and
elementary exploration of Cayley graphs. This is the foundation we use
throughout the rest of the text where we present a series of variations on
Cayley’s original insight that are particularly appropriate for the study
of infinite groups.

Relative to the rest of the text, this chapter is gentle, and should
contain material that is somewhat familiar to the reader. A reader who
has not previously studied groups and encountered graphs will find the
treatment presented here “brisk.”

1.1 Cayley’s Basic Theorem

You probably already have good intuition for what it means for a group
to act on a set or geometric object. For example:

e The cyclic group of order n — denoted Z, — acts by rotations on a
regular n-sided polygon.



2 Cayley’s Theorems

e The dihedral group of order 2n — denoted D,, — also acts on the reg-
ular n-sided polygon, where the elements either rotate or reflect the
polygon.

e We use SyM,, to denote the symmetric group of all permutations
of [n] = {1,2,...,n}. (More common notations are S, and X,.)
By its definition, SYM,, acts on this set of numbers, as does its
index 2 subgroup, the alternating group A,, consisting of the even
permutations.

e Matrix groups, such GL,(R) (the group of invertible n-by-n matrices
with real number entries), act on vector spaces.

Because the general theme of this book is to study groups via actions,
we need a bit of notation and a formal definition.

Convention 1.1. If X is a mathematical object (such as a regular poly-
gon or a set of numbers), then we use SYM(X) to denote all bijections
from X to X that preserve the indicated mathematical structure. For
example, if X is a set, then SyM(X) is simply the group of permutations
of the elements of X. In fact, if n = |X| then SYM(X) =~ SyMm,,. More-
over, if X and X’ have the same cardinality, then SYmM(X) ~ Sym(X”).
If X is a regular polygon, then angles and lengths are important, and
SYM(X) will be composed of rotations and reflections (and it will in fact
be a dihedral group). Similarly, if X is a vector space, then Sym(X) will
consist of bijective linear transformations.

What we are referring to as “SyYM(X)” does have a number of different
names in different contexts within mathematics. For example, if G is a
group, then the collection of its symmetries is referred to as AUT(G), the
group of automorphisms. If we are working with the Euclidean plane, R?,
and are considering functions that preserve the distance between points,
then we are looking at IsSoM(R?), the group of isometries of the plane.

It is quite useful to have individual names for these groups, as their
names highlight what mathematical structures are being preserved. Our
convention of lumping these various groups all together under the name
“SyM” is vague, but we believe that in context it will be clear what
is intended, and we like the fact that this uniform terminology empha-
sizes that these various situations where groups arise are not all that
different.! One egregious example, which highlights the need to be care-

1 In his book, Symmetry, Hermann Weyl wrote: “{W]hat has indeed become a guid-
ing principle in modern mathematics is this lesson: Whenever you have to deal
with a structure-endowed entity ¥ try to determine its group of automorphisms,
the group of those element-wise transformations which leave all structural relations
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ful in using our convention, comes from the integers. If the integers are
thought of as simply a set, containing infinitely many elements, then
SYM(Z) is an infinite permutation group, which contains Sym,, for any
n. On the other hand, if Z denotes the group of integers under addition,
then SYM(Z) = Z3. (The only non-trivial automorphism of the group of
integers sends n to —n for all n € Z.)

Definition 1.2. An action of a group G on a mathematical object X
is a group homomorphism from G to SYM(X). Equivalently, it is a map
from G x X — X such that

1. e-z ==z, for all x € X; and
2. (gh)-x=g-(h-z),forall gh € G and z € X.

We denote “G acts on X” by G ~ X.

If one has a group action G ~ X, then the associated homomorphism
is a representation of G. The representation is faithful if the map is
injective. In other words, it is faithful if, given any non-identity element
g € G, there is some z € X such that g -z # z.

Example 1.3. The dihedral group D, is the symmetry group of a
regular n-gon. As such, it also permutes the vertices of the n-gon, hence
there is a representation D,, — SYM,,. As every non-identity element of
D,, moves at least (n — 2) vertices, this representation is faithful.

Remark 1.4 (left vs. right). In terms of avoiding confusion, this is
perhaps the most important remark in this book. Because not all groups
are abelian, it is very important to keep left and right straight. All of
our actions will be left actions (as described above). We have chosen to
work with left actions since it matches function notation and because
left actions are standard in geometric group theory and topology.

Groups arise in a number of different contexts, most commonly as
symmetries of any one of a number of possible mathematical objects X.
In these situations, one can often understand the group directly from
our understanding of X. The dihedral and symmetric groups are two
examples of this. However, groups are abstract objects, being merely
a set with a binary operation that satisfies a certain minimal list of
requirements. Cayley’s Theorem shows that the abstract notion of a
group and the notion of a group of permutations are one and the same.

undisturbed. You can expect to gain a deep insight into the constitution of ¥ in

this way.” Our use of SYM(X) instead of AUT(XZ) is a small notational deviation
from Weyl’s recommendation.



4 Cayley’s Theorems

Theorem 1.5 (Cayley’s Basic Theorem). Every group can be faithfully
represented as a group of permutations.

Proof. The objects that G permutes are the elements of G. In this proof
we use “SYMg” to denote SYM(G), to emphasize that “G” denotes the
underlying set of elements, not the group. The permutation associated
to g € G is defined by left multiplication by g. That is, g — 74 € SYMg
where my(h) = g - h for all h € G. This is a permutation of the elements
of G, since if g - h = g - b/, then by left cancellation, h = h’. Denote the
map taking the element g to the permutation 7y by 7 : G — Symg.

To check that 7 is a group homomorphism we need to verify that
m(gh) = 7(g) - 7(h). In other words, we need to show that mgy = 7y - Th.
We do this by evaluating what each side does to an arbitrary element of
G. We denote the arbitrary element by “z”, thinking of it as a variable.
The permutation 7y, takes  — (gh) - x, and successively applying 7
then 7, sends  +— h -z +— g - (h - z). Thus checking that ¢ is a homo-
morphism amounts to verifying the associative law: (gh) -z =g- (h- z).
As this is part of the definition of a group, the equation holds.

In order to see that the map is faithful it suffices to show that no
non-identity element is mapped to the trivial permutation. One can do
this by simply noting that if g € G\ {e}, then g-e = g, hence 74(e) = g,
and so 7, is not the identity (or trivial) permutation. O

The proof of Cayley’s Basic Theorem constructs a representation
of G as a group of permutations of itself. Before moving on we should
examine what these permutations look like in some concrete situa-
tions. We first consider SyMgs, the group of all permutations of three
objects.

Notation 1.6 (cycle notation). In describing elements of SYm,, we use
cycle notation, and multiply (that is, compose permutations) right to
left. This matches with our intuition from functions where fog(z) means
that you first apply g then apply f, and it is consistent with our use of
left actions. Here is a concrete example: (12)(35) € SyMs is the ele-
ment that transposes 1 and 2, as well as 3 and 5; the element (234)
sends 2 to 3, 3 to 4 and 4 to 2; the product (12)(35) - (234) = (12534).
(The product is not (13542), which is the result of multiplying left
to right.)
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Example 1.7. The group SyMjs has six elements, shown as disjoint
vertices in Figure 1.1. The permutations described by Cayley’s Basic
Theorem — for the elements (12) and (123) — are also shown.

12) 12)
.

—

(132) (123) (132) (123)
-

a3’ @3 @3 23)

Fig. 1.1. The permutation of SYmz induced by (12) is shown on the left, and
the permutation induced by (123) is shown on the right.

(—V'(OJ)

-1,-1) 0,-1) (1,-1) 2,-1)

Fig. 1.2. The action of (2,1) on Z & Z.

Example 1.8. In most introductions to group theory, Cayley’s Basic
Theorem is stated for finite groups. But we made no such assumption in
our statement and the same proof as is given for finite groups works for
infinite groups. Consider for example the direct product of two copies
of the group of integers, G = Z @ Z. Here elements are represented by
pair's of integers, and the binary operation is coordinatewise addition:
(a,b)+ (¢,d) = (a+c¢,b+d). In Figure 1.2 we have arranged the vertices
corresponding to elements of G as the integral lattice in the plane. The
arrows indicate the permutation of the elements of Z @ Z induced by the
element (2,1).
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1.2 Graphs

One of the key insights into the study of groups is that they can be
viewed as symmetry groups of graphs. We refer to this as “Cayley’s
Better Theorem,” which we prove in Section 1.5.2. In this section we
establish some terminology from graph theory, and in the following
section we discuss groups acting on graphs.

Definition 1.9. A graph T consists of a set V(I') of vertices and a
set E(T') of edges, each edge being associated to an unordered pair of
vertices by a function “ENDS”: ENDS(e) = {v,w} where v,w € V. In
this case we call v and w the ends of the edge e and we also say v and
w are adjacent.

We allow the possibility that there are multiple edges with the same
associated pair of vertices. Thus for two distinct edges e and €’ it can be
the case that ENDS(e) = ENDS(e’). We also allow loops, that is, edges
whose associated vertices are the same. Graphs without loops or multiple
edges are simple graphs.

Graphs are often visualized by making the vertices points on paper and
edges arcs connecting the appropriate vertices. Two simple graphs are
shown in Figure 1.3; a graph which is not simple is shown in Figure 1.4.

Fig. 1.3. The complete graph on five vertices, K5, and the complete bipartite
graph K3 4.

There are a number of families of graphs that arise in mathematics.
The complete graph on n vertices has exactly one edge joining each pair
of distinct vertices, and is denoted K. At the opposite extreme are the
null graphs, which have no edges.

A graph is bipartite if its vertices can be partitioned into two subsets —
by convention these subsets are referred to as the “black” and “white”
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vertices — such that, for every e € E(T'), ENDS(e) contains one black
vertex and one white vertex. The complete bipartite graphs are simple
graphs whose vertex sets have been partitioned into two collections, V,
and V,, with edges joining each vertex in V, with each vertex in V,. If
|Vs| = n and |V,| = m then the corresponding complete bipartite graph
is denoted K, -

The valence or degree of a vertex is the number of edges that contain
it. For example, the valence of any vertex in K, is n — 1. If a vertex
v is the vertex for a loop, that is an edge e where ENDS(e) = {v,v},
then this loop contributes twice to the computation of the valence of v.
For example, the valence of the leftmost vertex in the graph shown in
Figure 1.4 is six.

A graph is locally finite if each vertex is contained in a finite number
of edges, that is, if the valence of every vertex is finite.

An edge path, or more simply a path, in a graph consists of an alter-
nating sequence of vertices and edges, {vo, €1,v1,...,Vn—1,€n,Un} Where
ENDS(e;) = {vi—1,v;} (for each 7). A graph is connected if any two ver-
tices can be joined by an edge path. In Figure 1.4 we have indicated an

Fig. 1.4. On top is a graph which is not simple, with its vertices labelled by
numbers and its edges labelled by letters. Below is the set of edges traversed in
an edge path, joining the vertex labelled 1 to the vertex labelled 3, is indicated.

edge path from the leftmost vertex to the rightmost vertex. If v; is the
vertex labelled i and e, is the edge labelled a, then this path is:

{vlvea» vl,ee,v4,eg,v5, €h, V2, ebvvlvedvv2aei7v3}



