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Re = 1000. (a) Pressure distribution along the plate surface,
(b) exit velocity profile.

Shock and boundary layer interaction [94]. Final mesh, nodes:
4198. (a) Initial and final (second) adapted mesh; (b) initial and
final (second) pressure contours; (c) initial and final (second)
Mach number contours; (d) surface pressure and skin tension.

Hybrid mesh for supersonic viscous flow past a NACAOO12 aero-
foil [95], Mach 2, and contours of Mach number: (a) initial
mesh; (b) first adapted mesh; (c) final mesh; (d) mesh near
stagnation point (shown opposite).

Structured grid in boundary layer for a two-component aerofoil
[25]. Advancing boundary normals.

Transonic viscous flow past a NACAOO12 aerofoil. Mach number
0.85, Reynolds number = 2000. (a) Finite element mesh; (b)
structured layers close to the wall.

Transonic viscous flow past a NACAOO12 aerofoil. Mach number
0.85, Reynolds number = 2000. Mach contours.

Transonic viscous flow past a NACAOO12 aerofoil. Mach number
0.85, Reynolds number = 2000. (a) surface pressure and (b)
friction coefficients distribution.

Hypersonic viscous flow past a double ellipsoid. Unstructured
mesh with structured mesh layers close to the walls: (a) adapted
mesh; (b) structured layers close to the wall; (c) close-up of
structured layers.

Hypersonic viscous flow past a double ellipsoid. Density
contours.

Random variation of velocity in a turbulent flow with respect to
time.

(a) Structured mesh S1 (nodes: 15,625; elements: 69,120);
(b) unstructured mesh Ul (nodes: 23,597; elements:
127,692).
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Wall distance contours at a central section in the x; direction
(uniformly structured mesh S1). Comparison between search
procedure and implicit GMRES scheme. (a) Simple search pro-
cedure (structured mesh): ¢min = 0.0, ¢max = 0.5000; (b)
Eikonal equation (structured mesh): ¢min = 0.0, ¢max =
0.5000; (c) simple search procedure (unstructured mesh):
Omin = 0.0,¢max = 0.4923; (d) Eikonal equation (unstruc-
tured mesh): ¢m,n = OO, ¢max = 04887

Turbulent incompressible flow through a rectangular channel
using the Spalart-Allmaras model at Re = 12,300. Logarithmic
representation of time-averaged velocity profile. (Note: ut =
u/u; with u; = \/ty/p being the friction velocity; y* = yu; /v
with y being the shortest distance to the wall.)

Turbulent incompressible flow in a rectangular channel using
the Spalart-Allmaras model at Re = 12,300. (a) Comparison of
fully developed velocity profiles; (b) convergence to the steady
state.

Turbulent flow past a two-dimensional backward facing step.
Problem definition.

Incompressible turbulent flow past a backward facing step. Velo-
city profiles at various downstream sections at Re = 3025:
(a) one-equation model; (b) SA model; (c) two-equation model.

Incompressible turbulent flow past a backward facing step.
(a) Structured mesh (elements: 8092, nodes: 4183), (b) veloc-
ity contours, (c) ¥ contours, and (d) pressure contours at Re =
3015 using the SA model.

Incompressible turbulent flow past a backward facing step.
(a) Unstructured mesh (elements: 47,359, nodes: 24,336),
(b) velocity contours, and (c) ¥ contours at Re = 3025 using
the SA model.

Incompressible turbulent flow past a circular cylinder. Finite
element mesh: (a) overall mesh; (b) close-up of the cylinder.

Incompressible turbulent flow past a circular cylinder. Snap-
shots of variables at Re = 10,000 using the SA model: (a) u;
contours; (b) p contours; (c) vy contours.

Incompressible turbulent flow past a circular cylinder. (a) Drag
and (b) lift coefficient distributions with respect to real time at
Re = 10,000 using the SA model.

Incompressible turbulent flow past a circular cylinder. Time-
averaged coefficient of pressure at Re = 10,000 using the SA
model. Data for comparison from Ref. [20].

Typical examples of porous media.

Fluid saturated porous medium. Infinitesimal control volume.

Forced convection in a channel filled with a variable porosity
medium. Geometry and boundary conditions.
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Forced convection in a channel. Comparison of Nusselt number
with experimental data for different particle Reynolds numbers.
Points—experimental [24]; dashed line—numerical [24]; solid
line—CBS.

Forced convection in a channel. Comparison between the gen-
eralized model and the Forcheimmer and Brinkman extensions
to Darcy’s law.

Natural convection in a fluid-saturated variable-porosity medium.
Problem boundary conditions.

Buoyancy driven flow in a fluid-saturated porous medium. Finite
element mesh (nodes: 2601, elements: 5000).

Natural convection in a fluid-saturated porous, square enclo-
sure. Vector plots and temperature contours for different Rayleigh
and Darcy numbers, Pr = 0.71.

Natural convection in a fluid-saturated constant-porosity medium.

Problem definition.

Natural convection in a fluid-saturated constant-porosity medium
within an annular enclosure. Comparison of hot wall steady-state

Nusselt number with the experimental and numerical data [32].

The shallow-water problem. Notation: (a) coordinates; (b) veloc-
ity distribution.

Shoaling of a wave: (a) problem statement; (b) solution, for 40,
80, and 160 elements at various times.

Propagation of waves due to dam break (C|_ap = 0). Forty ele-
ments in analysis domain. C = \/gH = 1, At = 0.25.

A “bore” created in a stream due to water level rise downstream
(A). Level at A, p =1 —cos nt/30 (0 < t < 30), 2 (30 < 1).
Levels and velocities at intervals of 5 time units, At = 0.5.

Steady-state oscillation in a rectangular channel due to periodic
forcing of surface elevation at an inlet. Linear frictional dissipa-
tion [32].

Location map. Bristol Channel and Severn Estuary.
Finite element meshes. Bristol Channel and Severn Estuary.
Velocity vector plots (FL mesh).

Finite element mesh used in the Severn bore calculations
(a) Full domain (b) Part of the domain between points A and
B (c) Part of the domain beyond point B.

Severn tsunami. Generation during high tide. Water height con-
tours (times after generation).

Wave-induced steady-state flow past a harbor [30].
Supercritical flow and formation of shock waves in symmetric
channel of variable width contours of h. Inflow Froude number
= 2.5. Constriction: 15°.

Adjustment of boundary due to tidal variation.
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