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Preface

The range of chemical products is enormous and these products contribute greatly
to the quality of our lives. The manufacturing processes of chemicals also lead to vast
amounts of wastes, and the reduction or elimination of these wastes is now our
central issue. To minimize wastes in chemical manufacturing, the catalytic method
is a reliable solution, replacing synthetic processes of low atom efficiency using
hazardous stoichiometric reagents. Especially for fine chemicals production, anti-
quated methodologies with stoichiometric oxidations such as permanganate or
dichromate reagents are still widely used. But, times are changing! In the manu-
facture of large-scale petrochemicals as well as laboratory-scale syntheses, the
environmentally-unfriendly processes should be replaced with cleaner and greener
oxidants such as O,, H,0, and N,O in combination with heterogeneous catalysts. In
the last few decades, many efficient heterogeneous oxidation catalysts and methods
have been developed and the editor feels that it is necessary to survey the recent
developments in heterogeneous oxidation catalysis. This book will discuss mainly
the case studies of recent developments in heterogeneous oxidation catalysis and
will be directed towards chemists engaged in catalyst preparation and design,
catalysis and catalytic organic synthesis, both in academia as well as industry.

In this book, both gas- and liquid-phase oxidations are included although the latter
are more numerous. Chapter 1 deals with the concepts in selective oxidation of small
alkane molecules. Chapters 26 then review the strategies of catalyts design with
metal oxides, metal nanoparticles, zeolites, hydroxyapatites, hydrotalcites, montmor-
illonites and polyoxometalates. The chemistry and application of N,O as an oxidant
are discussed in Chapter 7. Chapters 8 and 9 deal with recent developments in the
direct synthesis of H,0, and greener industrial processes, respectively. Each chapter
contains extensive references covering the very important and principal literature
through to the beginning of 2000.

Finally, the editor would like to express sincere thanks to colleagues and friends
who have contributed such fine chapters. He also thanks Dr Kazuya Yamaguchi
(The University of Tokyo) and Dr Stefanie Volk (Wiley-VCH) for their help in
preparing this book.

March 2009 Noritaka Mizuno
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1
Concepts in Selective Oxidation of Small Alkane Molecules
Robert Schlogl

1.1
Introduction

The subject of heterogeneously catalyzed selective oxidation has been reviewed
many times. Under the keyword combination “selective catalytic oxidation” the ISI
database reports about 5400 papers. Over 100 reviews on the topic have been
published. In the present discussion, the subjects of methane activation and model
studies of unselective CO oxidation, which represent large fields, are excluded.
Homogeneously or biologically catalyzed selective oxidation, a combined field that
is about 10-fold larger in scientific coverage, is also excluded from this chapter.
Instead, the present chapter deals mainly with the activation of C;, C3 and C,
hydrocarbons focussing on oxidative dehydrogenation and oxo-functionalization as
target reactions. This seemingly limited field of research encompasses a central entry
port to commodity molecules used in chemical industry. The issues of selectivity and
energy conversion are of enormous practical relevance as the potential is great for
making the chemical industry more sustainable is in this small area of catalytic
chemistry. However, the still limited success in performing these reactions effectively
sheds light on the level of our scientific understanding of these reactions. The science
is based upon a set of phenomenological concepts referred as “principles” in the
literature, enabling the discovery and optimization of the present catalytic materials.
By far the most influential principle is that of “lattice oxygen” [1-3]. It states at its
core that atomic oxygen that can selectively oxidize a hydrocarbon has to come from
a lattice position of the catalyst. The reduction of the metal centers is thought to
arise from oxygen anion transport from deeper layers of the catalyst to its surface.
Gas-phase oxygen, being detrimental as reagent with organics, re-oxidizes the
catalytic material in a spatio-temporal separation between the hydrocarbon redox
chemistry and the catalyst redox chemistry. This separation is widely referred to as
the “Mars—van Krevelen type (MvK)” reaction “mechanism” [4, 5]. The original
derivation by the authors Mars and van Krevelen [6] did, however, not contain any
interpretation of their finding in SO, oxidation over vanadium oxides. In their
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1 Concepts in Selective Oxidation of Small Alkane Molecules

kinetic work a second term had to be added to the conventional Langmuir equation
to explain the experimental finding. Only much later was it realized that this term
should describe the “slow re-oxidation of the catalyst,” for which there is little
experimental evidence [7]. The postulated general validity of the principle is
questioned by the operation of monolayer oxide catalysts [8], which have little
ability to deliver lattice oxygen, and by numerous findings in homogeneous
catalytic oxidation where molecular oxides such as RuO, afford excellent [9]
selective oxidation.

Another strongly prevailing principle is that of “phase cooperation” [10-13].
This states that high-performance oxidation catalysts must be of the multi-phase
type, as the different functions required in performing the selective oxidation of
a hydrocarbon are only adequately optimized when independent functionally
optimized phases cooperate in the catalytic cycle. This intuitively appealing concept
renders it almost impossible applying the tools of functional analysis to selective
oxidation as the chemical and structural complexity arising from a multi-element-
multi-phase oxide (MMO) overwhelms all analytical possibilities of today’s experi-
mentation and theory. Recent developments in catalyst synthesis have shown on
the model level [14-16], as well as with high-performance systems [17-21], that
substantial catalytic action can be obtained from proven single-phase systems.

At present, the field is still without an unchallenged scientific base despite the
enormous effort invested into the issue and the many papers written. This situation is
unsatisfactory with respect to the enormous relevance of selectivity in large-scale
industrial processes. In the opinion of the author this is not due to a lack of excellent
ideas — almost all possible ideas about the function of these catalysts have been
proposed. It is a rational experimental approach beyond the principles described
in the literature that is needed to unify the concepts into a scientific foundation for
better catalyst developments. A parallel search for such catalysts has been advocated
and performed [22] with great effort but apparently no success in solving the
challenges of the field. This statement is not negative against high-throughput
experimentation as such but shows that this technique also requires a scientifically
sound basis for its useful application [23].

The above critical remarks do not diminish the enormous success in the develop-
ment of oxidation reactions that seem close to impossible within the framework
of homogeneous chemistry. The most successful process is the one-step reaction
of butane to maleic anhydride (MA):

CsHqo + 7/2 0, — C4H,05 +4H,0

The process solves the problem of activating the poorly reactive butane and then
abstracting eight protons without cleaving a carbon—carbon bond. In addition, three
oxygen atoms are attached without forming any carbon oxides. This is only possible
as the product MA is kinetically stable against further oxidation at the remaining
protons, as the locations of further attack are strongly bound to the cyclic carbon
skeleton. The reaction occurs in many intermediate steps that are all stabilized
against oxidative attack due to chemisorption at an active site that has to become
progressively less active during the whole transformation. We assume that the active
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site stores electrons from the substrate in its structure and becomes progressively
reduced, which in turn reduces its ability to activate C—H bonds. With release of
the product we expect concomitant release of water from stored OH groups and
re-oxidation by oxygen from the feed. As there are no split oxygen molecules at hand
(excluding special oxidants) the active site has to accommodate one extra oxygen atom
for every two-center bond being made. The fact that per turnover 14 electrons have to
be stored at the active site and that the highly suitable vanadium cation changes its
oxidation states between 5 and 3 would call for an active site consisting of seven
vanadium centers and a suitable combination of terminal and bridging oxygen
atoms. A minimum size of an active site of vanadium species would be two centers
as they can store the four electrons required to activate one molecule of oxygen.
Such a cluster is hardly a “lattice.” Italso can not be a section of an oxide lattice, as then
the reacting site would not be isolated electronically, as through oxygen ion diffusion
and electronic conductivity the oxidation state of the active site would be kept as
constant as possible so as to minimize the free energy of the system. The active site is
thus seen as a cluster supported on a matrix of a foreign material (supported catalyst)
or of a compound from which the cluster originates by segregation (self-supported).
The cluster exhibits a structure capable of adsorbing activated oxygen and of holding
protons as intermediate hydroxyl groups. The adsorbed oxygen, being part of the
coordination geometry of the cluster in its regenerated state, has been called “surface
lattice oxygen” [8, 24, 25], a term for which the author sees no need as this oxygenis an
adsorbate situated at a high energy position of the structure.

The general principle of site isolation [26] is the consequence of many observations
in selective catalysis that are not confined to selective oxidation. High performing
catalysts exhibit isolated sites, minimizing the influx of electrons and activated
reactants (oxygen, hydrogen) during conversion of a substrate molecule. This
principle of site isolation [1, 2, 26-32] is the most powerful rule for finding selective
oxidation catalysts. It is, however, mostly applied in a crystallographic manner,
meaning that structures are sought that exhibit strong variations in atom density
in their motifs by combining locally dense building blocks with linking polyhedra,
leaving substantial empty space in the unit cell “channels.” A particular, instructive
example of site isolation is the idealized crystal structure of salts of heteropolyacids
(HPA), a family of compounds [18, 33-35] capable of performing many selective
oxidation reactions.

It is apparent that logical clashes occur when in the literature the principle of
site isolation is applied in conjunction with phase cooperation and lattice oxygen
dynamics. Both concepts require for their operation a close contact of the active site
with its environment and suggest a continuing exchange of reactants and electrons
during the conversion of a substrate molecule. Elaborate sets of assumptions are
made to remedy these clashes. The purpose of this review is to suggest a reconcilia-
tion of these conflicting concepts as all of them are based on undeniable observations.
Table 1.1 gives a (incomplete) list of reviews that highlight the complexity of the
arguments that arose from the applications of empirical principles. The list is split
into two groups: articles covering reactions and those dealing with the structure and
function of catalysts. There is no ordering within the groups.
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