R AN R SRR Y ERTE

W. ARTHUR CHAPMAN

Mastering

C Programming

W. Arthur Chapman

M

MACMILLAN

© W. Arthur Chapman 1991

All rights reserved. No reproduction, copy or transmission
of this publication may be made without written permission.

No paragraph of this publication may be reproduced, copied or
transmitted save with written permission or in accordance with
the provisions of the Copyright, Designs and Patents Act 1988,
or under the terms of any licence permitting limited copying
issued by the Copyright Licensing Agency, 33—4 Alfred Place,
London WCIE 7DP.

Any person who does any unauthorised act in relation to
this publication may be liable to criminal prosecution and
civil claims for damages.

First edition 1991

Published by

MACMILLAN EDUCATION LTD
Houndmills, Basingstoke, Hampshire RG21 2XS
and London

Companies and representatives

throughout the world

Printed in Hong Kong

British Library Cataloguing in Publication Data

Chapman, Arthur

Mastering C programming.

1. Computer systems. Programming languages: C language
I. Title

005.113

ISBN (0-333-49842-9 Pbk

ISBN 0-333-49843-7 Pbk export

O Preface

This book is intended as a first course in C programming. It is suitable for
those new to programming as well as for those already familiar with
another programming language. Access to a computer running C is
assumed. With this condition the text is suitable for use in self-study,
directed study through open or distance learning as well as via a more
traditional approach as a class text. All the example programs and
functions have been tested using Turbo C version 2.0. However, with very
few exceptions, no changes should be necessary if other C compilers are
used.

The main aim of the book is to introduce C and to provide the
essentials of the language. The standard used throughout is the draft ANSI
standard, and its counterpart the draft British Standard Specification
(ISO/IEC DIS 9899), which is summarised in the second edition of the
classic text for C The C Programming Language by Brian W. Kernighan
and Dennis M. Ritchie, Englewood Cliffs, NJ: Prentice Hall 1988.

The text begins by looking at problem solving in fairly general terms
before moving on to a first C program in Chapter 2. These first two
chapters form an important introduction to the main text and are especially
intended for anyone new to programming. Subsequent chapters develop
the C language, its syntax and semantics. The material is designed to take
the reader step by step from the basics (Ch. 3) through control structures
(Chs. 4-6) and data structures (Chs. 8 and 10) to the more advanced topics
of lists and list processing (Ch. 11). New elements of the C language are
illustrated by numerous examples of program fragments, functions and
complete programs.

Throughout the book a number of rather more substantial programs are
developed to provide a context for the use of C in rather larger projects. As
and when appropriate, these programs, their design and implementation
are discussed and functions developed. Three main programs are dealt
with in detail; they are a calculator, a line editor and a simple bridge tutor.
The calculator is discussed in detail, and the program is developed, in
Chapter 7. We introduce the line editor in Chapter 1 and develop various
parts of it throughout the book. The bridge tutor is introduced in Chapter 2
and provides a simple program to simulate shuffling, dealing, counting

xii Preface

points and suggesting opening bids. For the most part no knowledge of
bridge is necessary but a familiarity with cards and card games such as
whist would be helpful. These latter two programs are listed in full, and
their functions are discussed in detail, in Appendices B and C respectively.

Most chapters conclude with a summary which highlights the main points
covered in the chapter and which serves to act as a revision aid to the
reader. In addition, most chapters contain exercises which are designed to
reinforce the topics covered and to develop the readers understanding of
C. Some of these exercises refer to the larger programs and as such the
answers can be found in the relevant program listings.

As you work through the material presented here you should develop a
good understanding of C and C programming. If by the time you have
completed your study of this text you have a desire to continue programm-
ing in C, wish to move on to more advanced aspects of the language, and
have even more importantly found that C programming is both challenging
and also fun, then the book will have achieved its purpose.

This book developed out of an idea suggested by my friend and
colleague Noel Chidwick and I would like to thank him for that original
idea and his encouragement throughout the project. (Not to mention the
late nights and early mornings which seemed to form an inevitable part of
life in recent months!) Thanks are also due to many other friends and
colleagues at Telford College, Edinburgh and further afield who have
helped and supported me in various ways. I would also like to extend my
gratitude to students who attended various classes given by me in recent
years. They willingly tried out many of the ideas which finally found their
way into this book and provided much helpful stimulation. I am pleased to
be able to extend my thanks to Jane Wightwick at Macmillan for her help
and support during the lifetime of this project and her understanding when
deadlines were missed. Finally, and most importantly, I would like to
thank my wife Judy and our children Emma, Lucy and Donald who have
put up with an, even more than usual, bad-tempered fifth member of the
household! Without their forebearance and encouragement the task of
writing would have been much harder.

June 1990 W. Arthur Chapman

O Contents

List of Figures and Tables
Preface

1. Beginning with problems
1.1 Preliminaries

1.2 Problem solving

1.3 Devising a solution

1.4 Algorithm

1.5 Programming

1.6 Pseudocode

1.7 A line editor

1.8 The computer program
Summary

Exercises

2. Towards C

2.1 Introduction

2.2 The first C program
2.3 C program structure
2.4 Functions — a first look
2.5 From code to results

Summary

Exercises

3. Of words and objects
3.1 Language
3.2 Data types
3.3 Making declarations
3.4 Doing a little calculating
3.5 Operators
3.6 Some new operators
3.7 Type conversion
3.8 Expressions
3.9 Statements
3.10 Formatted input and output: scanf() and print()
Summary
Exercises

X
X1

27
27
31
33
37
40
41

43
48
54
58
63
69
70
73
74
76
81
81

vi Contents

4. Selection in C, or ‘Which way next?’

4.1 Introduction 84
4.2 Conditional expressions 84
4.3 Logical operators 86
4.4 The IF statement 89
4.5 The IF ... ELSE statement 93
4.6 The SWITCH statement 96
Summary 100
Exercises 101

5. Doing it again and again!

5.1 Introduction 103
5.2 The WHILE loop 103
5.3 The DO ... WHILE loop 109
5.4 The FOR loop 111
5.5 The comma operator 115
5.6 Example — prime numbers 118
5.7 Arrays — a quick look 119
Summary 121
Exercises 122

6. Functions — making them useful

6.1 Introduction 124
6.2 The RETURN statement 124
6.3 Function types other than int 129
6.4 Passing data into a function 132
6.5 Some examples 135
6.6 Call by value 140
6.7 Functions and header files 144
6.8 Storage class 146
Summary 150
Exercises 150

7. The calculator

7.1 Introduction 153
7.2 Problem definition 153
Exercises 165

8. Pointers, arrays and strings

8.1 Introduction 166
8.2 Pointers 166
8.3 Pointers and functions — call by reference 169
8.4 Arrays 172
8.5 Arrays and pointers 175
8.6 Arrays and functions 179

8.7 Strings 187

10.

11.

8.8 String library functions

8.9 Arrays of strings

8.10 Two-dimensional arrays

8.11 More on pointers

8.12 Using arrays — the bridge tutor
Summary
Exercises

Input and output — more thoughts
9.1 Introduction
9.2 Input and output — the story so far
9.3 More on formatting using printf()
9.4 Input formatting using scanf()
9.5 File i/o
9.6 Doing some file i/o

Summary

Exercises

Typedef, structures and unions
10.1 Introduction

10.2 TYPEDEF

10.3 Structures

10.4 Structures and TYPEDEF
10.5 Structures within structures
10.6 Pointers and structures
10.7 Unions

Summary

Exercises

Lists and list processing
11.1 Introduction
11.2 Basic concepts

11.3 Simple lists

11.4 More list processing functions
Summary

Conclusion

Appendix A
The ASCII codes

Appendix B
The line editor

Appendix C
The bridge tutor

Contents vii

193
196
197
198
201
203
204

206
206
208
211
213
216
226
227

228
228
232
236
238
241
244
247
247

251
251
259
260

270
270

271

272

288

viii Contents

Appendix D
Further reading 302

Index 303

O List of Figures and Tables

FIGURES

1.1
1.2
13
14
1.5
1.6
2.1
22
23
3.1
32
33
34
35
3.6
5.1
7.1
8.1
8.2
83
8.4

8.5
11.1
11.2
11.3
114
11.5
11.6
11.7
11.8
119

Problem solving ... ‘How do I cross the road?’
The desk instructions

Simple program control

Program control with selection

The line editor

The life cycle of a computer program

Simple C program structure

Bridge Tutor main-menu screen

From code to results - the likely route in C
From characters to a program

Bits, bytes and words

Float numbers

The apothecary’s window

Incrementing

Using brackets to change the order of evaluation
The structure of a for loop

The process() algorithm

Using a pointer

Array representation

Using a pointer to index an array

Comparison of a single character stored in an array
(*char) and stored as a char

Arrays of strings

A list element

Addressing the first element of a list

A simple list

Converting a two-character string to a list using recursion
Inserting elements into a list

Insertion in the middle of a list

Deleting an element from a list

Deleting by copying the next element

A list requiring ordering

11.10 The ordered list

12
13
19
23
32
37
39
45
49
52
58

67
112
158
168
173
176

187
197
252
252
253
255
263
264
266
266
268
268

x List of figures and tables

TABLES

1.1
12
3.1
3.2
3.3
34
3.5
4.1
42
43
44
7.1
8.1

9.1
9.2
93
94
9.5
9.6
9.7
9.8

Valid line definitions for the line editor

The line editor commands

The keywords of C

Associativity and precedence of the arithmetic operators
The arithmetic assignment operators

White spaces - nonprinting characters

Common conversion specifications

The relational operators

The truth-table for && and Il in terms of truth values
The truth-table for && and Il for any expression
Truth-table for the expression: (x !=0 && 1/x > 0.001)
Evaluation of the expression: 2*(4+3*(7-5)/(10-6))
The relationship between array addresses, array elements,
array contents and pointers

Standard input/ouput functions

printf() conversion-string examples: char and int
printf() conversion characters

prinif() conversion-string examples: float

prinif() conversion-string examples: strings

scanf() conversions (main set)

Input/output mode parameters

File i/o functions and their stdio equivalents

18
20
48

70
77
78
85
87
88
89
159

180
207
209
210
211
211
212
214
216

@ Beginning with problems

“Some problems are just too complicated for rational logical solutions. They
admit of insights, not answers.” J. B. Wiesner

1.1 PRELIMINARIES

In this chapter we will be mainly concerned with the important topic of problem
solving. We will be looking at ways in which problems can be tackled and the
most productive ways of obtaining solutions — we will be concentrating on
problems which can be solved and for which “rational logical solutions” can be
found. In the process of working through this chapter you will be introduced to
some techniques which enable well structured programs to be developed. This
includes the idea of top-down design, the use of stepwise refinement and the
writing of algorithms. The fundamental control structures of procedural
languages will be introduced and their relevance for C indicated. A method of
writing algorithms using pseudocode will be developed and will be applied to
some programming tasks which we will be discussing in greater depth in later
chapters.

Developing a computer program, wicther in C, or in any other language, is a
matter of devising a solution to a problem; it involves clear and logical thinking
and requires the writing of careful and effective code. Computer programming is
a mixture of an art and a science. A computer program can include clever
solutions to a problem using obscure elements of the language but if the final
program is to be understood, or even used, by someone else then it must have a
clear structure and good documentation.

We will be looking at both the art and the science of programming so that by
the end of this chapter you will be able to develop an outline solution to most
problems. In future chapters these techniques will be extended to enable you to
write programs in C. Let us begin, though, by forgetting about the details of
computer programming and look first of all at problem solving in more general
terms.

2 Mastering C Programming

Computer programming ...

involves devising solutions to
problems;

it requires clear and logical thought

1.2 PROBLEM SOLVING

The art of problem solving is difficult to define. However the task of problem
solving, which is to find a solution to a particular problem, seems all too
obvious. This appears easy enough until you start the process. Some problems
are easy to solve, others are far more difficult. Problems come in all shapes and
sizes. They cover such diverse tasks as: getting up in the morning (a problem to
most people), preparing breakfast or making a cup of coffee, existing on
unemployment benefit, achieving world peace, saving the tropical rain forests,
or solving the all-embracing environmental problems.

We will concentrate on some more mundane tasks and will begin by taking a
look at a reasonably simple everyday problem. You are on the pavement at the
side of a busy road. You are in a hurry and you need to cross the road. A hundred
metres away, in the opposite direction, is a set of traffic lights (see Figure 1.1).
What do you do? Think about the possibilities, about what options are open to
you (which ones are safest, which ones are quickest) before reading on.

Fig 1.1 Problem solving ... ‘How do I cross the road?’

Z

',

Il ‘%[J__*m,-\?,' ,
;_,,,vf SR
R,
Xy 72

& R

N b
Sy 3

Ciboan

ARG

[‘l'“
!

P

Beginning with problems 3

Crossing the road

How did you approach this problem? Well, first of all there is no right answer;
there are many possibilities, most of which have their good and bad points.
Perhaps you decided to wait for a break in the traffic and then make a dash for it!
This solution is not to be recommended, especially if you have young children
or an elderly person with you. Alternatively you may have decided that the traffic
was too heavy and so walking up to the traffic lights was the best option — you
could afford to be a few minutes late rather than risk ending up in a hospital bed
or worse. Again you may have decided that it was rather a silly problem and
rather than try to solve it in advance you would wait until you next had to cross
aroad. Whilst this solution (putting it off) might be satisfactory in this case, it
cannot be allowed in computer programming — problems need to be solved
before they arise. However you may have decided that this problem was rather
silly on the grounds that you were not given enough information. If you came
up with this last point then give yourself a pat on the back.

One of the most important points which this seemingly simple problem
should have highlighted is that often you are not given all of the necessary facts.
For example:

» What day of the week is it?

If it is a Sunday then possibly walking across the road would be the best
option — observing the Green Cross Code of course.

* What time of day is it?

The solution will obviously be different if it is the rush hour rather than
1.30 am.

« I neglected to tell you that there is a subway only a few metres away.

Even these few simple and obvious comments should help to underline the
important point that a problem may not be well specified and that in deciding on
a solution you may need to make some assumptions. If this is indeed the case
then these assumptions must be made explicit from the outset. Discovering
hidden assumptions, or making explicit assumptions which must be made are
part of the task of understanding the problem. Another vital part of the process
of understanding a problem involves drawing up a specification of the problem.

A second stage in problem solving is the all-important one of devising a
solution. In computing this will generally mean devising an algorithm. We will
be looking at one approach to this in the next section and will looking a little
more closely at algorithms in 1.4. Once a solution has been devised it then has

4 Mastering C Programming

to be implemented. In computer terms this will involve translating the
algorithm into a computer program. Finally the plan is carried out and note
taken of its successes (and failures). With a computer program this will mean
running it and evaluating the accuracy of the results.

The stages in the problem solving process will generally be carried out in the
order given above. However in practice the first two stages may be mixed up and
a sufficiently detailed understanding of the problem may only be possible once
the process of devising a solution has begun.

Problem solving involves
e understanding the problem
« devising a solution
e implementing the solution

« evaluating the solution

1.3 DEVISING A SOLUTION

There are various approaches to the task of devising a solution. One of the most
common involves a ‘top down’ methodology. This means starting from the
problem definition and working step by step towards a solution. At each step in
the process the problem is broken up into smaller and smaller ‘chunks’. This
process of stepwise refinement is then continued until a set of easily-solved
sub-problems has been arrived at.

Stepwise refinement ...

the process of breaking a problem
into chunks which are then
refined step by step

Charlie’s desk

Charlie, a fresher of three weeks’ standing, has been pondering the difficulties of
working at a tiny table with less than stable legs and is out searching for a desk
as a solution to ‘all’ his problems. Being of slender means (he is still awaiting

Beginning with problems 5

his grant) he drops into a shop littered with bric-a-brac and second-hand goods of
all kinds.

While searching amongst the debris of bird cages, shooting sticks and battered
suitcases, he discovers the answer to his prayers. There in the corner, in a dusty
plastic bag, is a ‘Student Desk’, a self-assembly job at what he hopes is a
knock-down price. Summoning the shop assistant he enquires the price. ‘That's
five pounds, sir’ is the response to the vitally important question. So, dipping
into a pocket of his tattered denims he pulls out five pound coins and, not
believing his good fortune, walks out into the chilly October air with his newly
acquired possession.

Arriving back at the flat he decides to celebrate his astounding good luck by
having filtered coffee — there is just enough to make one last pot. Once the
coffee is on he starts the process of unpacking his desk. He carefully lays out the
pieces on the not very spacious floor and searches through the odds and ends for
the instructions. At last, in a packet containing assorted screws he finds,
somewhat tattered and torn, the crucial pieces of paper. He smooths them out and
putting on his battered spectacles peruses the words of wisdom.

Charlie is devastated! With a crumpled, torn and incomplete set of instructions
(Figure 1.2) how will he ever manage to build his desk? After pondering the
problem for a few minutes he has a sudden flash of inspiration. ‘Why not try
stepwise refinement?’ he says to himself. This wonderous method has only
recently been introduced to him by his lecturer in programming techniques and
now is the time to test out the theory on a real-life problem.

After sorting through the bits and pieces of the kit, checking the contents
(luckily nothing appeared to be missing) and after an hour or so’s work with the

scraps of instructions he finally came up with what seemed like a usable set of
instructions.

Charlie’s instructions
1. Bookcase

Assemble the carcase using the 11/5" screws.
Fix the back to the carcase using six small nails.

Glue four dowels into the top of the bookcase.
Leave to set.
2. Cupboard

Glue four dowels into the top of the end panels.

6 Mastering C Programming

Knock the drawer runners into the end panels.

Glue four dowels into the plinths (one into each end).

Fix the plinths between the end panels using the 11/2" screws.
Fix the back to the cupboard carcase using six nails.

Attach the front using 11/2" screws.

Cupboard Door

Screw the hinges to the door using the 1/2" screws.

Screw the knob onto the door.
Attach the door with the hinges to the right hand panel using 1/7"screws.

Drawer

Glue the drawer wrap at the joints and glue four dowels into the holes
provided.

Glue the drawer front.

Assemble and leave until the glue sets (24 hours approx.).

When dry wipe over with a damp cloth to remove excess glue.

Fit handle.

3. Final Assembly

Place the top, upside down, on a clean, smooth surface.

Squeeze glue into the eight holes on the underside of the top.

Position the bookcase carcase and press firmly. (A slight tap with a
mallet may be required to ensure that the dowels are firmly seated.)

Repeat for the cupboard.

Leave for approx. 24 hours to dry.

4. To finish

Wipe the entire desk with a damp cloth.
Cover all exposed screw heads with the screw covers provided.

With the help of his own instructions and after a few bouts of trial and error
Charlie managed to complete the task and a day or two later was seen hard at
work at his newly-acquired masterpiece.

The strategy which Charlie used to solve the problem of assembling the desk,
and which the makers had also suggested, was that of stepwise refinement. The
task was broken up into a number of jobs, each of which could be carried out
separately. Once all the tasks had been completed the problem was solved and the
desk finished.

