Antibiotics, Chemotherapeutics & Antibacterial Agents For Disease Control

Encyclopedia Reprint Series Martin Grayson, Series Editor

Antibiotics, Chemotherapeutics, and Antibacterial Agents for Disease Control

ENCYCLOPEDIA REPRINT SERIES

Editor: Martin Grayson

A WILEY-INTERSCIENCE PUBLICATION

JOHN WILEY & SONS

NEW YORK • CHICHESTER

BRISBANE

TORONTO

SINGAPORE

Copyright © 1982 by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work beyond that permitted by Section 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the Permissions Department, John Wiley & Sons, Inc.

ISBN 0-471-87359-4

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

EDITORIAL STAFF

Editorial Board:

Herman F. Mark, Polytechnic Institute of New York Donald F. Othmer, Polytechnic Institute of New York Charles G. Overberger, University of Michigan Glenn T. Seaborg, University of California, Berkeley

Caroline L. Eastman

Executive Editor: Martin Grayson Associate Editor: David Eckroth

Production Supervisor: Michalina Bickford

Editors: Galen J. Bushey

Loretta Campbell

Lorraine van Nes Anna Klingsberg

CONTRIBUTORS

Frederick J. Antosz, The Upjohn Company, Kalamazoo, Michigan, Antibiotics, ansama-

Julius Berger, Hoffmann-La Roche Inc., Nutley, New Jersey, Antibiotics, phenazines Alexander Bloch, Roswell-Park Memorial Institute, Buffalo, New York, Antibiotics, nucleo-

James H. Boothe, Lederle Laboratories Division, American Cyanamid Company, Pearl River, New York, Antibiotics, tetracyclines

Peter J. L. Daniels, Schering-Plough Corporation, Bloomfield, New Jersey, Antibiotics, aminoglycosides

viii CONTRIBUTORS

- **Leonard Doub,** Warner Lambert-Parke Davis Research Laboratories, Detroit, Michigan, Antibacterial agents, sulfonamides
- **Frank F. Ebetino,** Norwich Pharmacal Company, Division of Morton-Norwich Products, Inc., Norwich, New York, Antibacterial agents, nitrofurans
- **Thomas E. Eble,** The Upjohn Company, Kalamazoo, Michigan, Antibiotics, lincosaminides
- John Ehrlich, Detroit Institute of Technology, Grosse Pointe, Michigan, Antibiotics, chloramphenical and its analogues
- Ashit K. Ganguly, Schering Corp., Bloomfield, New Jersey, Antibiotics, oligosaccharides George E. Gifford, University of Florida, Gainesville, Florida, Chemotherapeutics, antiviral
- William Gump, Consultant, Upper Montclair, New Jersey, Disinfectants and antiseptics Joseph J. Hlavka, Lederle Laboratories Division, American Cyanamid Company, Pearl River, New York, Antibiotics, tetracyclines
- **John R. E. Hoover,** *Smith Kline & French Laboratories, Philadelphia, Pennsylvania,* Antibiotics, β -lactams
- James W. Ingalls, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Brooklyn, New York, Chemotherapeutics, anthelmintic
- H. G. Klein, Klein Medical International, New York, New York, Antibiotics, survey
- George Y. Lesher, Sterling-Winthrop Research Institute, Rensselaer, New York, Antibacterial agents, synthetic, nalidixic acid and other quinolone carboxylic acids
- **Alan K. Mallams,** Schering-Plough Corporation, Bloomfield, New Jersey, Antibiotics, macrolides; Antibiotics, polyenes
- **Edgar J. Martin,** Food and Drug Administration, Rockville, Maryland, Chemotherapeutics, antiprotozoal
- **Charles J. Masur,** Lederle Laboratories, American Cyanamid Company, Pearl River, New York, Chemotherapeutics, antimitotic
- C. Glen Mayhall, Medical College of Virginia, Richmond, Virginia, Chemotherapeutics, antimycotic and antirickettsial
- Claude H. Nash, Smith Kline & French Laboratories, Philadelphia, Pennsylvania, Antibiotics, β -lactams
- William Pearl, Lederle Laboratories, American Cyanamid Company, Pearl River, New York, Chemotherapeutics, antimitotic
- D. Perlman[†], University of Wisconsin, Madison, Wisconsin, Antibiotics, peptides
- **Bing T. Poon,** Walter Reed Army Institute of Research, Washington, D.C., Chemotherapeutics, antiprotozoal
- **Smith Shadomy,** *Medical College of Virginia, Richmond, Virginia,* Chemotherapeutics, antimycotic and antirickettsial
- John W. Westley, Hoffmann-La Roche Inc., Nutley, New Jersey, Antibiotics, polyethers Howard C. Zell, Food and Drug Administration, Rockville, Maryland, Chemotherapeutics, antiprotozoal

[†] Deceased.

PREFACE

This is the first of a new series of carefully selected reprints from the world-renowned Kirk-Othmer Encyclopedia of Chemical Technology designed to provide specific audiences with articles grouped by a central theme. The comprehensive, authoritative collection presented in this volume deals with chemical agents used in the control and treatment of the major disease classes: cancer, viral and bacterial diseases, fungal and rickettsial infections, parasitic diseases and substances used for disinfection and antisepsis. Health and medical professionals, pharmaceutical and medicinal chemists, biochemists and many others concerned with investigating, prescribing or administering antibiotic and chemotherapeutic agents will find this book to be an invaluable resource and reference tool. The authors are noted experts from the principal pharmaceutical companies and biomedical research institutes. The articles have been reviewed in every case by competent specialists in each field. The full text and extensive bibliographies, charts and figures of the original articles have been reproduced here unchanged. Cross references to other articles in the original Encyclopedia have been retained to facilitate peripheral searching where further details are required. All the useful features of the Encyclopedia have been retained, including: Chemical Abstracts Service Registry Numbers, simultaneous use of the international (SI) and English units, and thorough indexing of each article by automated retrieval and sorting from a machine-readable composition system. Coverage is complete and up to date. The articles have been edited carefully for clarity, readability, and technical accuracy with special regard to this area by the Associate Editor of the Encyclopedia, Dr. David Eckroth.

Later volumes in this series will range over the enormous variety of the Kirk-Othmer Encyclopedia to satisfy the particular information needs of professional and

x PREFACE

technical readers who do not have quick access to the 25-volume original work or who wish to maintain a desk-top collection for ready reference in their field. Many of these volumes are also expected to serve as supplementary course readings and research reference tools for teaching professionals and their students. The editor anticipates that many of the requests for these specialized collections received in the past will now be fulfilled and the books will serve a useful information function.

M. GRAYSON

NOTE ON CHEMICAL ABSTRACTS SERVICE REGISTRY NUMBERS AND NOMENCLATURE

Chemical Abstracts Service (CAS) Registry Numbers are unique numerical identifiers assigned to substances recorded in the CAS Registry System. They appear in brackets in the Chemical Abstracts (CA) substance and formula indexes following the names of compounds. A single compound may have many synonyms in the chemical literature. A simple compound like phenethylamine can be named β -phenylethylamine or, as in Chemical Abstracts, benzeneethanamine. The usefulness of the Encyclopedia depends on accessibility through the most common correct name of a substance. Because of this diversity in nomenclature careful attention has been given the problem in order to assist the reader as much as possible, especially in locating the systematic CA index name by means of the Registry Number. For this purpose, the reader may refer to the CAS Registry Handbook-Number Section which lists in numerical order the Registry Number with the Chemical Abstracts index name and the molecular formula; eg, 458-88-8, Piperidine, 2-propyl-, (S)-, C₈H₁₇N; in the Encyclopedia this compound would be found under its common name, coniine [458-88-8]. The Registry Number is a valuable link for the reader in retrieving additional published information on substances and also as a point of access for such on-line data bases as Chemline, Medline, and Toxline.

In all cases, the CAS Registry Numbers have been given for title compounds in articles and for all compounds in the index. All specific substances indexed in *Chemical Abstracts* since 1965 are included in the CAS Registry System as are a large number of substances derived from a variety of reference works. The CAS Registry System identifies a substance on the basis of an unambiguous computer-language description of its molecular structure including stereochemical detail. The Registry Number is a machine-checkable number (like a Social Security number) assigned in sequential order to each substance as it enters the registry system. The value of the number lies in the fact that it is a concise and unique means of substance identification, which is

independent of, and therefore bridges, many systems of chemical nomenclature. For polymers, one Registry Number is used for the entire family; eg, polyoxyethylene (20) sorbitan monolaurate has the same number as all of its polyoxyethylene homologues.

Registry numbers for each substance will be provided in the third edition cumulative index and appear as well in the annual indexes (eg, Alkaloids shows the Registry Number of all alkaloids (title compounds) in a table in the article as well, but the intermediates have their Registry Numbers shown only in the index). Articles such as Analytical methods, Batteries and electric cells, Chemurgy, Distillation, Economic evaluation, and Fluid mechanics have no Registry Numbers in the text.

Cross-references are inserted in the index for many common names and for some systematic names. Trademark names appear in the index. Names that are incorrect, misleading or ambiguous are avoided. Formulas are given very frequently in the text to help in identifying compounds. The spelling and form used, even for industrial names, follow American chemical usage, but not always the usage of *Chemical Abstracts* (eg, coniine is used instead of (S)-2-propylpiperidine, aniline instead of benzenamine, and acrylic acid instead of 2-propenoic acid).

There are variations in representation of rings in different disciplines. The dye industry does not designate aromaticity or double bonds in rings. All double bonds and aromaticity are shown in the *Encyclopedia* as a matter of course. For example, tetralin has an aromatic ring and a saturated ring and its structure appears in the

Encyclopedia with its common name, Registry Number enclosed in brackets, and parenthetical CA index name, ie, tetralin, [119-64-2] (1,2,3,4-tetrahydronaphthalene). With names and structural formulas, and especially with CAS Registry Numbers the aim is to help the reader have a concise means of substance identification.

CONVERSION FACTORS, ABBREVIATIONS, AND UNIT SYMBOLS

SI Units (Adopted 1960)

A new system of measurement, the International System of Units (abbreviated SI), is being implemented throughout the world. This system is a modernized version of the MKSA (meter, kilogram, second, ampere) system, and its details are published and controlled by an international treaty organization (The International Bureau of Weights and Measures) (1).

SI units are divided into three classes:

BASE UNITS

length
mass[‡]
time
electric current
thermodynamic temperature§
amount of substance
luminous intensity

meter[†] (m) kilogram (kg) second (s) ampere (A) kelvin (K) mole (mol) candela (cd)

$$t = T - T_0$$

where T is the thermodynamic temperature, expressed in kelvins, and $T_0 = 273.15$ K by definition. A temperature interval may be expressed in degrees Celsius as well as in kelvins.

[†] The spellings "metre" and "litre" are preferred by ASTM; however "-er" are used in the Encyclopedia.

[‡] "Weight" is the commonly used term for "mass."

[§] Wide use is made of "Celsius temperature" (t) defined by

xiv FACTORS, ABBREVIATIONS, AND SYMBOLS

SUPPLEMENTARY UNITS

plane angle radian (rad) solid angle steradian (sr)

DERIVED UNITS AND OTHER ACCEPTABLE UNITS

These units are formed by combining base units, supplementary units, and other derived units (2–4). Those derived units having special names and symbols are marked with an asterisk in the list below:

Unit gray meter per second	Symbol Gy m/s ²	Acceptable equivalent J/kg
squared becquerel	Bq	1/s
square kilometer	km^2	
square hectometer square meter	${ m hm^2} { m m^2}$	ha (hectare)
farad mole per cubic meter	F mol/m ³	C/V
siemens	S	A/V
ampere per square	A/m^2	
kilogram per cubic	kg/m ³	g/L; mg/cm ³
coulomb meter coulomb	C·m C	A·s
coulomb per cubic meter	C/m ³	
volt per meter coulomb per square meter	V/m C/m ²	
volt	V	W/A
ohm megajoule	Ω MJ	V/A
kilojoule	kJ	
joule electron volt [†] kilowatt-hour [†]	J eV† kW∙h†	N∙m
	gray meter per second squared becquerel square kilometer square hectometer square meter farad mole per cubic meter siemens ampere per square meter kilogram per cubic meter coulomb meter coulomb per cubic meter volt per meter coulomb per square meter volt per meter coulomb per square meter volt ohm megajoule kilojoule joule	gray meter per second squared becquerel Square kilometer square hectometer square meter farad mole per cubic meter kilogram per cubic meter coulomb meter coulomb per cubic meter volt per meter volt per meter volt meter volt ohm megajoule kilojoule joule electron volt† Square kilometer km² km² km² siemens S A/m² M² km² km² siemens S A/m² kg/m³ C·m C/m³ V/m C/m² MJ kilojoule kJ joule electron volt† eV†

[†] This non-SI unit is recognized by the CIPM as having to be retained because of practical importance or use in specialized fields (1).

Quantita	Unit	Cause h a l	Acceptable
Quantity		Symbol I/m3	equivalent
energy density	joule per cubic meter kilonewton	J/m ³ kN	
*force	newton	N	kg·m/s ²
*f=====================================		MHz	kg·III/S
*frequency	megahertz hertz	Hz	1/s
hast conscitu entropy	joule per kelvin	J/K	1/5
heat capacity, entropy heat capacity (specific),	joule per kilogram	J/(kg•K)	
specific entropy	kelvin	0/(Rg II)	
heat transfer coefficient	watt per square meter kelvin	W/(m ² •K)	
*illuminance	lux	lx	lm/m^2
*inductance	henry	Н	Wb/A
linear density	kilogram per meter	kg/m	
luminance	candela per square meter	cd/m ²	
*luminous flux	lumen	lm	cd·sr
magnetic field strength	ampere per meter	A/m	
*magnetic flux	weber	Wb	V _S
*magnetic flux density	tesla	T	Wb/m^2
molar energy	joule per mole	J/mol	
molar entropy, molar heat	joule per mole		
capacity	kelvin	J/(mol·K)	
moment of force, torque	newton meter	N·m	
momentum	kilogram meter per		
	second	kg·m/s	
permeability	henry per meter	H/m	
permittivity	farad per meter	F/m	
*power, heat flow rate,	ane all sa grinne if hi		
radiant flux	kilowatt	kW	
	watt	W	J/s
power density, heat flux	watt per square	****/ 0	
density, irradiance	meter	W/m ²	
*pressure, stress	megapascal	MPa	
	kilopascal	kPa	NT/ 9
11 1	pascal	Pa	N/m^2
sound level	decibel	dB	
specific energy specific volume	joule per kilogram	J/kg	
The state of	cubic meter per kilogram	m³/kg	
surface tension	newton per meter	N/m	
thermal conductivity	watt per meter kelvin	W/(m·K)	
velocity	meter per second	m/s	
vigaggity dynamia	kilometer per hour pascal second	km/h Pa•s	
viscosity, dynamic	millipascal second	mPa·s	
viscosity, kinematic	square meter	IIII a·s	
, mileniane	per second	m^2/s	
	*		

xvi FACTORS, ABBREVIATIONS, AND SYMBOLS

Quantity	Unit	Symbol	Acceptable equivalent
	square millimeter	9.1	
1	per second	mm ² /s	
volume	cubic meter	m^3	T (11:) (7)
	cubic decimeter	dm^3	L(liter) (5)
	cubic centimeter	cm^3	mL
wave number	1 per meter	m^{-1}	
	1 per centimeter	cm^{-1}	

In addition, there are 16 prefixes used to indicate order of magnitude, as follows:

Multiplication			
factor	Prefix	Symbol	Note
10^{18}	exa	E	
10^{15}	peta	P	
10^{12}	tera	T	
10^{9}	giga	G	
10^{6}	mega	M	
10^{3}	kilo	k	
10^{2}	hecto	h^a	^a Although hecto, deka, deci, and centi
10	deka	da^a	are SI prefixes, their use should be
10^{-1}	deci	d^a	avoided except for SI unit-mul-
10^{-2}	centi	c ^a	tiples for area and volume and
10^{-3}	milli	m	nontechnical use of centimeter,
10^{-6}	micro	μ	as for body and clothing
10^{-9}	nano	n	measurement.
10^{-12}	pico	p	
10^{-15}	femto	f	
10^{-18}	atto	a	

For a complete description of SI and its use the reader is referred to ASTM E 380 (4) and the article Units and Conversion Factors which will appear in a later volume of the Encyclopedia.

A representative list of conversion factors from non-SI to SI units is presented herewith. Factors are given to four significant figures. Exact relationships are followed by a dagger. A more complete list is given in ASTM E 380-79(4) and ANSI Z210.1-1976 (6).

Conversion Factors to SI Units

To convert from	To	Multiply by
acre	square meter (m ²) meter (m)	4.047×10^3 $1.0 \times 10^{-10\dagger}$
angstrom	square meter (m ²)	$1.0 \times 10^{2\dagger}$
astronomical unit atmosphere	meter (m) pascal (Pa)	1.496×10^{11} 1.013×10^{5}
bar	pascal (Pa)	$1.0 \times 10^{5\dagger}$
barn	square meter (m ²)	$1.0 \times 10^{-28\dagger}$

[†] Exact.

To convert from	To	Multiply by
barrel (42 U.S. liquid gallons)	cubic meter (m ³)	0.1590
Bohr magneton (μ_{β})	J/T	9.274×10^{-24}
Btu (International Table)	joule (J)	1.055×10^{3}
Btu (mean)	joule (J)	1.056×10^{3}
Btu (thermochemical)	joule (J)	1.054×10^{3}
bushel	cubic meter (m ³)	3.524×10^{-2}
calorie (International Table)	joule (J)	4.187
calorie (mean)	joule (J)	4.190
calorie (thermochemical)	joule (J)	4.184†
centipoise	pascal second (Pa·s)	$1.0 \times 10^{-3\dagger}$
centistoke	square millimeter per second (mm ² /s)	1.0†
cfm (cubic foot per minute)	cubic meter per second (m ³ /s)	4.72×10^{-4}
cubic inch	cubic meter (m ³)	1.639×10^{-5}
cubic foot	cubic meter (m ³)	2.832×10^{-2}
cubic yard	cubic meter (m ³)	0.7646
curie	becquerel (Bq)	$3.70 \times 10^{10\dagger}$
debye	coulomb·meter (C·m)	3.336×10^{-30}
degree (angle)	radian (rad)	1.745×10^{-2}
denier (international)	kilogram per meter (kg/m)	1.111×10^{-7}
	tex [‡]	0.1111
dram (apothecaries')	kilogram (kg)	3.888×10^{-3}
dram (avoirdupois)	kilogram (kg)	1.772×10^{-3}
dram (U.S. fluid)	cubic meter (m ³)	3.697×10^{-6}
dyne	newton (N)	$1.0 \times 10^{-5\dagger}$
dyne/cm	newton per meter (N/m)	$1.0 \times 10^{-3\dagger}$
electron volt	joule (J)	1.602×10^{-19}
erg	joule (J)	1.0×10^{-7}
fathom	meter (m)	1.829
fluid ounce (U.S.)	cubic meter (m ³)	2.957×10^{-5}
foot	meter (m)	0.3048†
footcandle	lux (lx)	10.76
furlong	meter (m)	2.012×10^{-2}
gal	meter per second squared (m/s ²)	$1.0 \times 10^{-2\dagger}$
gallon (U.S. dry)	cubic meter (m ³)	4.405×10^{-3}
gallon (U.S. liquid)	cubic meter (m ³)	3.785×10^{-3}
gallon per minute (gpm)	cubic meter per second (m ³ /s)	6.308×10^{-5}
Sanon per minute (gpm)	cubic meter per second (m /s)	0.2271
gauss	tesla (T)	1.0×10^{-4}
gilbert	ampere (A)	0.7958
gill (U.S.)	cubic meter (m ³)	1.183×10^{-4}
grad	radian	1.571×10^{-2}
grain	kilogram (kg)	6.480×10^{-5}
gram force per denier	nowton nor toy (N/toy)	8 826 × 10-2

newton per tex (N/tex) 8.826×10^{-2}

gram force per denier

[†] Exact.

[‡] See footnote on p. xiv.

xviii FACTORS, ABBREVIATIONS, AND SYMBOLS

To convert from	To	Multiply by
hectare	square meter (m ²)	$1.0 \times 10^{4\dagger}$
horsepower (550 ft·lbf/s)	watt (W)	7.457×10^{2}
horsepower (boiler)	watt (W)	9.810×10^{3}
horsepower (electric)	watt (W)	$7.46 \times 10^{2\dagger}$
hundredweight (long)	kilogram (kg)	50.80
hundredweight (short)	kilogram (kg)	45.36
inch	meter (m)	$2.54 \times 10^{-2\dagger}$
inch of mercury (32°F)	pascal (Pa)	3.386×10^{3}
inch of water (39.2°F)	pascal (Pa)	2.491×10^2
kilogram force	newton (N)	9.807
kilowatt hour	megajoule (MJ)	3.6 [†]
kip	newton (N)	4.48×10^3
knot (international)	meter per second (m/s)	0.5144
lambert	candela per square meter	0.0144
lambert	(cd/m ²)	3.183×10^{3}
loogue (Pritish neuticel)		5.559×10^{3}
league (British nautical)	meter (m)	4.828×10^{3}
league (statute)	meter (m)	
light year	meter (m)	9.461×10^{15}
liter (for fluids only)	cubic meter (m ³)	$1.0 \times 10^{-3\dagger}$
maxwell	weber (Wb)	$1.0 \times 10^{-8\dagger}$
micron	meter (m)	$1.0 \times 10^{-6\dagger}$
mil	meter (m)	$2.54 \times 10^{-5\dagger}$
mile (statute)	meter (m)	1.609×10^3
mile (U.S. nautical)	meter (m)	$1.852 \times 10^{3\dagger}$
mile per hour	meter per second (m/s)	0.4470
millibar	pascal (Pa)	1.0×10^{2}
millimeter of mercury (0°C)	pascal (Pa)	$1.333 \times 10^{2\dagger}$
minute (angular)	radian	2.909×10^{-4}
myriagram	kilogram (kg)	10
myriameter	kilometer (km)	10
oersted	ampere per meter (A/m)	79.58
ounce (avoirdupois)	kilogram (kg)	2.835×10^{-2}
ounce (troy)	kilogram (kg)	3.110×10^{-2}
ounce (U.S. fluid)	cubic meter (m ³)	2.957×10^{-5}
ounce-force	newton (N)	0.2780
peck (U.S.)	cubic meter (m ³)	8.810×10^{-3}
pennyweight	kilogram (kg)	1.555×10^{-3}
pint (U.S. dry)	cubic meter (m ³)	5.506×10^{-4}
pint (U.S. liquid)	cubic meter (m ³)	4.732×10^{-4}
poise (absolute viscosity)	pascal second (Pa·s)	0.10†
pound (avoirdupois)	kilogram (kg)	0.4536
pound (troy)	kilogram (kg)	0.3732
poundal	newton (N)	0.1383
pound-force	newton (N)	4.448
pound per square inch (psi)	pascal (Pa)	6.895×10^3
quart (U.S. dry)	cubic meter (m ³)	1.101×10^{-3}

[†] Exact.

To convert from	To	Multiply by
quart (U.S. liquid)	cubic meter (m ³)	9.464×10^{-4}
quintal	kilogram (kg)	$1.0 \times 10^{2\dagger}$
rad	gray (Gy)	$1.0 \times 10^{-2\dagger}$
rod	meter (m)	5.029
roentgen	coulomb per kilogram (C/kg)	2.58×10^{-4}
second (angle)	radian (rad)	4.848×10^{-6}
section	square meter (m ²)	2.590×10^{6}
slug	kilogram (kg)	14.59
spherical candle power	lumen (lm)	12.57
square inch	square meter (m ²)	6.452×10^{-4}
square foot	square meter (m ²)	9.290×10^{-2}
square mile	square meter (m ²)	2.590×10^{6}
square yard	square meter (m ²)	0.8361
stere	cubic meter (m ³)	1.0†
stokes (kinematic viscosity)	square meter per second (m ² /s)	$1.0 \times 10^{-4\dagger}$
tex	kilogram per meter (kg/m)	$1.0 \times 10^{-6\dagger}$
ton (long, 2240 pounds)	kilogram (kg)	1.016×10^{3}
ton (metric)	kilogram (kg)	$1.0 \times 10^{3\dagger}$
ton (short, 2000 pounds)	kilogram (kg)	9.072×10^2
torr	pascal (Pa)	1.333×10^2
unit pole	weber (Wb)	1.257×10^{-7}
yard	meter (m)	0.9144†

Abbreviations and Unit Symbols

Following is a list of commonly used abbreviations and unit symbols appropriate for use in the *Encyclopedia*. In general they agree with those listed in *American National Standard Abbreviations for Use on Drawings and in Text (ANSI Y1.1)* (6) and *American National Standard Letter Symbols for Units in Science and Technology (ANSI Y10)* (6). Also included is a list of acronyms for a number of private and government organizations as well as common industrial solvents, polymers, and other chemicals.

Rules for Writing Unit Symbols (4):

- 1. Unit symbols should be printed in upright letters (roman) regardless of the type style used in the surrounding text.
 - 2. Unit symbols are unaltered in the plural.
- 3. Unit symbols are not followed by a period except when used as the end of a sentence.
- 4. Letter unit symbols are generally written in lower-case (eg, cd for candela) unless the unit name has been derived from a proper name, in which case the first letter of the symbol is capitalized (W,Pa). Prefix and unit symbols retain their prescribed form regardless of the surrounding typography.
- 5. In the complete expression for a quantity, a space should be left between the numerical value and the unit symbol. For example, write 2.37 lm, not 2.37lm, and 35 mm, not 35mm. When the quantity is used in an adjectival sense, a hyphen is often used, for example, 35-mm film. Exception: No space is left between the numerical value and the symbols for degree, minute, and second of plane angle, and degree Celsius.

XX FACTORS, ABBREVIATIONS, AND SYMBOLS

6. No space is used between the prefix and unit symbols (eg, kg).

7. Symbols, not abbreviations, should be used for units. For example, use "A," not "amp," for ampere.

8. When multiplying unit symbols, use a raised dot:

N·m for newton meter

In the case of W·h, the dot may be omitted, thus:

Wh

An exception to this practice is made for computer printouts, automatic typewriter work, etc, where the raised dot is not possible, and a dot on the line may be used.

9. When dividing unit symbols use one of the following forms:

m/s or m·s⁻¹ or
$$\frac{m}{s}$$

In no case should more than one slash be used in the same expression unless parentheses are inserted to avoid ambiguity. For example, write:

$$J/(mol \cdot K)$$
 or $J \cdot mol^{-1} \cdot K^{-1}$ or $(J/mol)/K$

but not

J/mol/K

10. Do not mix symbols and unit names in the same expression. Write:

joules per kilogram or J/kg or J·kg⁻¹

but not

joules/kilogram nor joules/kg nor joules·kg⁻¹

ABBREVIATIONS AND UNITS

A	ampere	AIChE	American Institute of
A	anion (eg, HA); mass number atto (prefix for 10^{-18})	AIME	Chemical Engineers American Institute of
AATCC	American Association of Textile Chemists and	at Faltoury	Mining, Metallurgical, and Petroleum Engineers
ABS	Colorists acrylonitrile-butadiene-	AIP	American Institute of Physics
	styrene	alc	alcohol(ic)
abs	absolute	Alk	alkyl
ac	alternating current, n .	alk	alkaline (not alkali)
a-c	alternating current, adj.	amt	amount
ac-	alicyclic	amu	atomic mass unit
acac	acetylacetonate	ANSI	American National
ACGIH	American Conference of		Standards Institute
	Governmental Industrial	AO	atomic orbital
	Hygienists	AOAC	Association of Official
ACS	American Chemical Society		Analytical Chemists
AGA	American Gas Association	AOCS	American Oil Chemist's
Ah	ampere hour		Society