<€ ADDISON-WESLEY PROFESSIONAL COMPUTING SERIES

UNIX® System V Network Programming

Stephen A. Rago

A
\A 4
ADDISON-WESLEY
An imprint of Addison Wesley Longman, Inc.

Reading, Massachusetts Harlow, England Menlo Park, California
Berkeley, California Don Mills, Ontario Sydney
Bonn Amsterdam Tokyo Mexico City

The programs and applications presented in this book have been included for their instruc-
tional value. They have been tested with care, but are not guaranteed for any particular
purpose. The publisher does not offer any warranties or representations, nor does it accept
any liabilities with respect to the programs or applications.

UNIX is a registered trademark of UNIX System Labs, Inc.

The publisher offers discounts on this book when ordered in quantity for special sales.
For more information please contact:

Corporate & Professional Publishing Group
Addison-Wesley Publishing Company

One Jacob Way

Reading, Massachusetts 01867

Library of Congress Cataloging-in-Publication Data

Rago, Stephen A.
UNIX System V network programming/Stephen A. Rago.
p. cm. (Addison-Wesley professional computing series)
Includes index.
ISBN 0-201-56318-5 (hard)
1. Operating systems (Computers). 2. Unix System V (Computer
file). 3. Computer networks. 1. Title. II. Series.
QA76.76.063R34 1993
005.7" 11—dc20 92-45276
CIP

Copyright © 1993 by Addison Wesley Longman, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without prior written
permission of the publisher. Printed in the United States of America. Published
simultaneously in Canada.

Text printed on recycled and acid-free paper

8 9 10111213 MA 00 99 98 97
8th Printing November, 1997

UNIX® System V Network Programming

Addison-Wesley Professional Computing Series

Brian W. Kernighan, Consulting Editor

Ken Arnold /John Peyton, A C User’s Guide to ANSI C

David R. Butenhof, Programming with POSIX® Threads

Tom Cargill, C++ Programming Style

William R. Cheswick/Steven M. Bellovin, Firewalls and Internet Security: Repelling the Wily Hacker

David A. Curry, UNIX® System Security: A Guide for Users and System Administrators

Erich Gamma/Richard Helm/Ralph Johnson/John Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software

Erich Gamma/Richard Helm/Ralph Johnson/John Vlissides, Design Patterns CD: Elements of
Reusable Object-Oriented Software

David R. Hanson, C Interfaces and Implementations: Techniques for Creating Reusable Software

Mark Harrison/Michael McLennan, Effective Tcl/Tk Programming: Writing Better Programs with
Tcl and Tk

S. Keshav, An Engineering Approach to Computer Networking: ATM Networks, The Internet, and
the Telephone Network

John Lakos, Large-Scale C++ Software Design

Scott Meyers, Effective C++, Second Edition: 50 Specific Ways to Improve Your Programs and Designs

Scott Meyers, More Effective C++: 35 New Ways to Improve Your Programs and Designs

Robert B. Murray, C++ Strategies and Tactics

David R. Musser/Atul Saini, STL Tutorial and Reference Guide: C++ Programming with the
Standard Template Library

John K. Ousterhout, Tcl and the Tk Toolkit

Craig Partridge, Gigabit Networking

J. Stephen Pendergrast Jr., Desktop KornShell Graphical Programming

Radia Perlman, Interconnections: Bridges and Routers

David M. Piscitello/A. Lyman Chapin, Open Systems Networking: TCP/IP and OSI

Stephen A. Rago, UNIX® System V Network Programming

Curt Schimmel, UNIX® Systems for Modern Architectures: Symmetric Multiprocessing and
Caching for Kernel Programmers

W. Richard Stevens, Advanced Programming in the UNIX® Environment

W. Richard Stevens, TCP/IP Illustrated, Volume 1: The Protocols

W. Richard Stevens, TCP/IP Illustrated, Volume 3: TCP for Transactions, HTTP, NNTP, and the
UNIX® Domain Protocols

Gary R. Wright/W. Richard Stevens, TCP/IP Illustrated, Volume 2: The Implementation

Preface

This book is for programmers who are interested in learning how to use the network-
ing interfaces in UNIX System V Release 4 (SVR4). We use real-life examples to
demonstrate how interfaces are used and techniques are applied. All too often in the
workplace we find ourselves faced with new assignments for which we have little
background. In these situations, we must educate ourselves as quickly as possible so
that we can competently undertake the task at hand. Although technical manuals
usually provide the information necessary to complete a task, they often lack the
background, motivation, and explanation that help us to understand more clearly
what we’re doing and why we’re doing it.

Intended as a practical reference, this book contains very little coverage of
theory, and details better dealt with through manual pages are omitted, although
references are used liberally. It could, however, be used to complement a graduate or
advanced undergraduate course in networking.

As a prerequisite to reading this book, you should be familiar with the UNIX
environment and the C programming language so that the examples can be under-
stood. Some background in data structures and algorithms would be helpful, but is
not required.

References to SVR4 manual pages are in the running text, appearing as the
command name or function name, followed by the section of the manual in which the
page is found, as in open (2). Here, we are referring to the open manual page in
Section 2 of the system manuals.
~ Originally, there was only one manual for the system. With the introduction of
each new release of the system, the manual grew in size until it had to be split up into
separate manuals. In UNIX System V Release 3, there was one manual for users,
one manual for programmers, and one manual for system administrators.

In SVR4, however, the manual pages were redistributed by functional area. The
user commands are no longer in a single manual, nor can you find all the program-
ming interfaces in one place. This new organization has proven difficult to navigate
by novices and experts alike. The following summary should aid in the process of
locating the desired manual pages.

xi

xii Preface

Programmer’s Reference Manual
(1) Commands relating to source code management, compilation, and loading
(2) System calls
(3, 3C, 38, 3E, 3G, 3M, 3X) Most library routines
(4) File formats
(5) Miscellany (commonly used constants, data structures, and macros)
Programmer’s Guide: Networking Interfaces
(1, 1IM) Networking commands
(3,3C, 3N) Network-related library routines
(4) Network-related file formats
(5) Miscellany, including network-related environment variables
(7) Networking drivers and modules
Programmer’s Guide: STREAMS
(1, 1IM) STREAMS-related commands
(2) STREAMS-specific system calls
(3C) STREAMS-specific library routines
(7) STREAMS modules and drivers
User’s Reference Manual
(1) Commands any user might want to run
System Administrator’s Reference Manual
(1IM) Administrative commands
(4) Administrative file formats
(5) Miscellaneous facilities
(7) Special files (devices)
(8) Administrative procedures

You might find it helpful if these manuals are close by when you read this book.

Background

The first standard network interface incorporated in the UNIX system was the socket
mechanism. This mechanism was provided in the 4.2 release of the Berkeley
Software Distribution (BSD) version of the UNIX operating system from the Univer-
sity of California at Berkeley. With it was an implementation of the Internet proto-
col suite (TCP, UDP, IP, et al.). These became available in 1983.

AT&T did not address standard networking interfaces in System V until 1985,
when it ported Dennis Ritchie’s Streams mechanism from the Version 8 Research
UNIX System to UNIX System V Release 2.0p, the unreleased predecessor to Sys-
tem V Release 3.0 (SVR3). With the release of SVR3 in 1986, STREAMS, the
framework for networking in System V, became generally available, along with the
Transport Layer Interface (TLI) library. Ironically, SVR3 was released without
including any networking protocols.

In 1988, X/OPEN, a consortium dedicated to enhancing application portability
through standards endorsements, specified its own transport layer interface library,
based on AT&T’s TLI library. The X/OPEN specification, called the X/OPEN
Transport Interface (XTI), is effectively a superset of TLI. In 1990 the Portable

Preface xiii

Operating System Interface (POSIX) committee of the Institute of Electrical and
Electronics Engineers (IEEE) created the 1003.12 working group to standardize port-
able networking interfaces for application programs. As of this writing, the 1003.12
working group’s efforts are still underway, but it looks as though both sockets and
XTI will be included in the standard.

SVR4 is unique in that it includes support for many standards in one operating
system. Unlike other versions of UNIX that support dual-universe environments,
SVR4 provides applications with one environment consisting of features from previ-
ous versions of the System V, SunOS, BSD, Xenix, SCO, and Research UNIX sys-
tems, as well as some new features of its own. Support for POSIX 1003.1 (the sys-
tem application programming interface) is also provided. The major networking
interfaces provided include STREAMS, TLI, sockets, and remote procedure calls.

Organization

The material covered in this book pertains mainly to SVR4, although some features
were present in earlier releases of UNIX System V. This book is divided into four
sections: background material, user-level network programming, kernel-level net-
work programming, and a design example.

Both user-level and kernel-level networking components are described to
present a complete picture of network programming in UNIX System V. Although
not everyone will be interested in both environments, knowledge of one environment
makes programming in the other easier. Instead of just blindly following the instruc-
tions in the manuals, it enables the programmer to understand the effects of his or her
actions and make better design decisions.

The first two chapters provide some background that will make the rest of the
book more useful to readers with less experience. More experienced readers can skip
these introductory chapters without much loss of context. Chapter 1 provides a brief
introduction to networking concepts, and Chapter 2 provides an overview of applica-
tion programming in the UNIX System V environment. In particular, Chapter 2 con-
tains example functions that are used throughout the rest of this text. If you skip
Chapter 2, you might want to refer back to individual examples as you come across
these functions in later chapters.

Chapter 3 is the first chapter concerned with network programming per se. It
covers the STREAMS programming environment. Since the STREAMS mechanism
is the basis for most of the communication facilities in System V, understanding its
services and system call interface is a prerequisite to discussing any System V net-
working facility.

Chapter 4 covers the Transport Layer Interface library. This is the interface
applications use to access the services provided by the transport layer of a computer
network. Emphasis is placed on application design to support network indepen-
dence.

Chapter 5 describes the network selection and name-to-address translation facil-
ities, which further extend the ability of a programmer to design network-
independent applications. Chapter 6 covers the network listener process. Using the

xiv Preface

listener simplifies the design of server processes. The Service Access Facility
(SAF), the administrative framework in which the listener operates, is also discussed.

Chapter 7 gives a brief description of the BSD socket interface and its
corresponding implementation in SVR4. The socket and TLI mechanisms are con-
trasted and compared. Chapter 8 discusses remote procedure calls and the external
data representation used to develop distributed applications. This ends the user-level
section of the text.

The next four chapters are dedicated to kernel-level network programming.
Chapter 9 describes the kernel environment, its utility routines, and the interfaces to
the STREAMS environment. Chapter 10 describes how to write STREAMS drivers,
centering around the design of a simple Ethernet driver. Chapter 11 describes how to
write STREAMS modules, centering around the design of a module that can be used
to emulate a terminal over a network connection. Chapter 12 describes how to write
STREAMS multiplexing drivers. It uses a simple connection-oriented transport pro-
vider as a detailed example.

Finally, the last section of the book, Chapter 13, covers the design of a SLIP
package for SVR4, including both the user-level and kernel-level components. It
illustrates the application of much from the preceding 12 chapters and, in essence,
ties the book together.

Much of the interesting material lies in the examples. You are encouraged
to work through each until it is understood. Source code for the examples
is available via anonymous FTP from the host ftp.uu.net in the file
published/books/rago.netprog.tar.Zz. If you don’t have direct access
to the Internet, you can use uucp to copy the source to your machine as follows:

uucp uunet!”/published/books/rago.netprog.tar.z /tmp

(This will place a copy of rago.netprog.tar.Z in /tmp on your system.) If
you have any comments, questions, or bug reports, please send electronic mail to
sar@plc.com.

Acknowledgements

This book was produced on an Intel i386-based system running UNIX System V
Release 4.0, Version 3. The text editor sam was used to create and update the text.
The pictures were created with xcip, a newer version of cip, on an AT&T
630MTG terminal. The output for the book was produced with egn, tbl, pic,
troff, and dpost from the Documenter’s WorkBench, Version 3.2.

I would like to thank the following reviewers for their invaluable input: Steve
Albert (Unix System Laboratories), Maury Bach (IBM Scientific and Technical
Center), George Bittner (Programmed Logic Corporation), Steve Buroff (AT&T Bell
Labs), Jeff Gitlin (AT&T), Ron Gomes (Morgan Stanley & Company), Peter Honey-
man (University of Michigan), Brian Kernighan (AT&T Bell Labs), Dave Olander
(Unix System Laboratories), Dennis Ritchie (AT&T Bell Labs), Michael Scheer
(Plexus Systems), Douglas Schmidt (University of California, Irvine), Rich Stevens
(independent consultant), and Graham Wheeler (Aztec Information Management).
In particular, both Brian Kernighan and Rich Stevens read every chapter and freely

Preface XV

shared their knowledge, experience, and formatting macros and shell scripts. They
have greatly increased the quality of the book.

Many people helped by answering questions where written history was vague or
incomplete. In addition to the reviewers, this group includes Guy Harris (Auspex
Systems), Bob Israel (Epoch Systems), Hari Pulijal (Unix System Laboratories),
Usha Pulijal (Unix System Laboratories), Glenn Skinner (SunSoft), Ken Thompson
(AT&T Bell Labs), and Larry Wehr (AT&T Bell Labs).

Rich Drechsler (AT&T Bell Labs) provided the PostScript program that
increased the width of the constant-width font used throughout this book. Both he
and Len Rago (AT&T Bell Labs) helped in debugging problems with the laser
printer used during the typesetting of this book. Thanks to them both. Thanks to
Dick Hamilton (Unix System Laboratories) for making an early copy of SVR4.2
documentation available. Also, thanks to Gus Amegadzie (Programmed Logic Cor-
poration), who helped test the SLIP software presented in Chapter 13. Special thanks
to John Wait (Addison-Wesley) for his advice and encouragement during the last two
years.

Finally, I want to thank my family, without whom this book wouldn’t have been
possible. They have supported me and helped to pull up the slack created by the
amount of time I devoted to writing this book. My parents instilled in me the work
ethic necessary to get it done (as well as provided their baby-sitting services), and my
wife worked harder to give me the time to write it.

Preface

PART 1: Background Material

1. Introduction to Networks
1.1. Background
1.2. Network Characteristics
1.3. Networking Models
Summary
Bibliographic Notes

2. UNIX Programming
2.1. Overview
2.2. Concepts
2.3. Conventions
2.4. Writing Programs
Summary
Exercises
Bibliographic Notes

PART 2: User-level Network Programming

3. STREAMS
3.1. STREAMS Background
3.2. STREAMS Architecture
3.3. System Calls
3.4. Nonblocking I/O and Polling
3.5. Service Interfaces

vii

Contents

xi

19
19
20
25
26
89
90
90

93

95
95
96
101
113
128

viii Contents

3.6. IPC with STREAMS Pipes 131
3.7. Advanced Topics 143
Summary 147
Exercises 147
Bibliographic Notes 148
4. The Transport Layer Interface 149
4.1. Introduction 149
4.2. Transport Endpoint Management 151
4.3. Connectionless Service 165
4.4. Connection-oriented Service 174
4.5. TLI and Read/Write 207
Summary 214
Exercises 214
Bibliographic Notes 215
5. Selecting Networks and Addresses 217
5.1. Introduction 217
5.2. Network Selection 218
5.3. Name-to-Address Translation 229
5.4. Name-to-Address Library Design 243
Summary 259
Exercises 259
Bibliographic Notes 259
6. The Network Listener Facility 261
6.1. The Service Access Facility 261
6.2. Port Monitors 265
6.3. The Listener Process 267
6.4. One-shot Servers 267
6.5. Standing Servers 274
6.6. The NLPS Server 285
Summary 288
Exercises 288
Bibliographic Notes 289
7. Sockets 291
7.1. Introduction 291
7.2. Socket Management 294
7.3. Connection Establishment 301
7.4. Data Transfer 306
7.5. UNIX Domain Sockets 313
7.6. Advanced Topics 323
7.7. Comparison with the TLI 330

7.8. Name-to-Address Translation 334

Contents

Summary
Exercises
Bibliographic Notes

8. Remote Procedure Calls
8.1. Introduction
8.2. XDR
8.3. High-level RPC Programming
8.4. Low-level RPC Programming
8.5. rpcgen
8.6. Advanced RPC Features
Summary
Exercises
Bibliographic Notes

PART 3: Kernel-level Network Programming

9. The STREAMS Subsystem
9.1. The Kernel Environment
9.2. The STREAMS Environment
9.3. STREAMS Messages
9.4. STREAMS Queues
9.5. Communicating with Messages
9.6. Message Types
Summary
Exercises
Bibliographic Notes

10. STREAMS Dirivers
10.1. Introduction
10.2. Driver Entry Points
10.3. The Data Link Provider Interface
10.4. Ethernet Driver Example
Summary
Exercises
Bibliographic Notes

11. STREAMS Modules
11.1. Introduction
11.2. Module Entry Points
11.3. The Terminal Interface
11.4. Network TTY Emulator Example
Summary
Exercises

ix

352
352
333

355
355
359
373
382
403
412
421
422
422

423

425
425
439
446
455
462
464
477
477
477

479
479
481
489
495
537
537
537

539
539
542
546
550
575
575

Bibliographic Notes

12. STREAMS Multiplexors
12.1. Introduction
12.2. How Multiplexors Work
12.3. The Transport Provider Interface
12.4. Transport Provider Example
Summary
Exercises
Bibliographic Notes

PART 4: Design Project

13. Design Project: Implementing SLIP
13.1. Introduction to SLIP
13.2. Software Architecture
13.3. User-level Components
13.4. Kernel-level Components
Summary
Exercises
Bibliographic Notes

Bibliography

Index

Contents

575

5T
577,
579
585
596
673
673
674

675

677
677
678
683
720
750
750
750

753

761

Part 1
Background Material

1

Introduction
to Networks

This chapter discusses the motivation behind networking and some of the charac-
teristics of various networks that we will encounter throughout the rest of this book.

1.1 BACKGROUND

A network can be loosely defined as the hardware and software that enable two enti-
ties to communicate. Humans can communicate over a telephone network. Central
processing units in a multiprocessor can communicate over internal system buses.
While these systems can be considered networks, this text is concerned only with
communicating entities that are independent computer systems (often called hosts).

Computer networks are popular for many reasons. They provide a cost-
effective alternative to large computing facilities. Rather than place all users and
their files on a large mainframe, the users can be distributed among smaller, less
expensive computers. By connecting these smaller machines with a network, the
same level of sharing can be attained as if everyone were on one big machine.

Networks allow the separate computers to share files, devices such as printers
and plotters, and other computing facilities, such as processing ability. Users can
exchange electronic mail over a network. Computer systems can be administered
remotely, over a network.

Because of networks, computers can be placed in the locations that best fit the
organizations that use them, instead of the other way around. Geographical freedom
allows organizations to structure themselves in ways that allow them to accomplish
their goals more effectively.

Reliability is another benefit of using computer networks. While one computer
is unavailable for processing, because it is either overloaded or out of service, pro-
cessing can be redirected to another computer on the network. Services previously
provided by a single computer can be distributed over several.

