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Preface

This book is for programmers who are interested in learning how to use the network-
ing interfaces in UNIX System V Release 4 (SVR4). We use real-life examples to
demonstrate how interfaces are used and techniques are applied. All too often in the
workplace we find ourselves faced with new assignments for which we have little
background. In these situations, we must educate ourselves as quickly as possible so
that we can competently undertake the task at hand. Although technical manuals
usually provide the information necessary to complete a task, they often lack the
background, motivation, and explanation that help us to understand more clearly
what we’re doing and why we’re doing it.

Intended as a practical reference, this book contains very little coverage of
theory, and details better dealt with through manual pages are omitted, although
references are used liberally. It could, however, be used to complement a graduate or
advanced undergraduate course in networking.

As a prerequisite to reading this book, you should be familiar with the UNIX
environment and the C programming language so that the examples can be under-
stood. Some background in data structures and algorithms would be helpful, but is
not required.

References to SVR4 manual pages are in the running text, appearing as the
command name or function name, followed by the section of the manual in which the
page is found, as in open (2). Here, we are referring to the open manual page in
Section 2 of the system manuals.
~ Originally, there was only one manual for the system. With the introduction of
each new release of the system, the manual grew in size until it had to be split up into
separate manuals. In UNIX System V Release 3, there was one manual for users,
one manual for programmers, and one manual for system administrators.

In SVR4, however, the manual pages were redistributed by functional area. The
user commands are no longer in a single manual, nor can you find all the program-
ming interfaces in one place. This new organization has proven difficult to navigate
by novices and experts alike. The following summary should aid in the process of
locating the desired manual pages.

xi
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Programmer’s Reference Manual
(1) Commands relating to source code management, compilation, and loading
(2) System calls
(3, 3C, 38, 3E, 3G, 3M, 3X) Most library routines
(4) File formats
(5) Miscellany (commonly used constants, data structures, and macros)
Programmer’s Guide: Networking Interfaces
(1, 1IM) Networking commands
(3,3C, 3N) Network-related library routines
(4) Network-related file formats
(5) Miscellany, including network-related environment variables
(7) Networking drivers and modules
Programmer’s Guide: STREAMS
(1, 1IM) STREAMS-related commands
(2) STREAMS-specific system calls
(3C) STREAMS-specific library routines
(7) STREAMS modules and drivers
User’s Reference Manual
(1) Commands any user might want to run
System Administrator’s Reference Manual
(1IM) Administrative commands
(4) Administrative file formats
(5) Miscellaneous facilities
(7) Special files (devices)
(8) Administrative procedures

You might find it helpful if these manuals are close by when you read this book.

Background

The first standard network interface incorporated in the UNIX system was the socket
mechanism. This mechanism was provided in the 4.2 release of the Berkeley
Software Distribution (BSD) version of the UNIX operating system from the Univer-
sity of California at Berkeley. With it was an implementation of the Internet proto-
col suite (TCP, UDP, IP, et al.). These became available in 1983.

AT&T did not address standard networking interfaces in System V until 1985,
when it ported Dennis Ritchie’s Streams mechanism from the Version 8 Research
UNIX System to UNIX System V Release 2.0p, the unreleased predecessor to Sys-
tem V Release 3.0 (SVR3). With the release of SVR3 in 1986, STREAMS, the
framework for networking in System V, became generally available, along with the
Transport Layer Interface (TLI) library. Ironically, SVR3 was released without
including any networking protocols.

In 1988, X/OPEN, a consortium dedicated to enhancing application portability
through standards endorsements, specified its own transport layer interface library,
based on AT&T’s TLI library. The X/OPEN specification, called the X/OPEN
Transport Interface (XTI), is effectively a superset of TLI. In 1990 the Portable
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Operating System Interface (POSIX) committee of the Institute of Electrical and
Electronics Engineers (IEEE) created the 1003.12 working group to standardize port-
able networking interfaces for application programs. As of this writing, the 1003.12
working group’s efforts are still underway, but it looks as though both sockets and
XTI will be included in the standard.

SVR4 is unique in that it includes support for many standards in one operating
system. Unlike other versions of UNIX that support dual-universe environments,
SVR4 provides applications with one environment consisting of features from previ-
ous versions of the System V, SunOS, BSD, Xenix, SCO, and Research UNIX sys-
tems, as well as some new features of its own. Support for POSIX 1003.1 (the sys-
tem application programming interface) is also provided. The major networking
interfaces provided include STREAMS, TLI, sockets, and remote procedure calls.

Organization

The material covered in this book pertains mainly to SVR4, although some features
were present in earlier releases of UNIX System V. This book is divided into four
sections: background material, user-level network programming, kernel-level net-
work programming, and a design example.

Both user-level and kernel-level networking components are described to
present a complete picture of network programming in UNIX System V. Although
not everyone will be interested in both environments, knowledge of one environment
makes programming in the other easier. Instead of just blindly following the instruc-
tions in the manuals, it enables the programmer to understand the effects of his or her
actions and make better design decisions.

The first two chapters provide some background that will make the rest of the
book more useful to readers with less experience. More experienced readers can skip
these introductory chapters without much loss of context. Chapter 1 provides a brief
introduction to networking concepts, and Chapter 2 provides an overview of applica-
tion programming in the UNIX System V environment. In particular, Chapter 2 con-
tains example functions that are used throughout the rest of this text. If you skip
Chapter 2, you might want to refer back to individual examples as you come across
these functions in later chapters.

Chapter 3 is the first chapter concerned with network programming per se. It
covers the STREAMS programming environment. Since the STREAMS mechanism
is the basis for most of the communication facilities in System V, understanding its
services and system call interface is a prerequisite to discussing any System V net-
working facility.

Chapter 4 covers the Transport Layer Interface library. This is the interface
applications use to access the services provided by the transport layer of a computer
network. Emphasis is placed on application design to support network indepen-
dence.

Chapter 5 describes the network selection and name-to-address translation facil-
ities, which further extend the ability of a programmer to design network-
independent applications. Chapter 6 covers the network listener process. Using the
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listener simplifies the design of server processes. The Service Access Facility
(SAF), the administrative framework in which the listener operates, is also discussed.

Chapter 7 gives a brief description of the BSD socket interface and its
corresponding implementation in SVR4. The socket and TLI mechanisms are con-
trasted and compared. Chapter 8 discusses remote procedure calls and the external
data representation used to develop distributed applications. This ends the user-level
section of the text.

The next four chapters are dedicated to kernel-level network programming.
Chapter 9 describes the kernel environment, its utility routines, and the interfaces to
the STREAMS environment. Chapter 10 describes how to write STREAMS drivers,
centering around the design of a simple Ethernet driver. Chapter 11 describes how to
write STREAMS modules, centering around the design of a module that can be used
to emulate a terminal over a network connection. Chapter 12 describes how to write
STREAMS multiplexing drivers. It uses a simple connection-oriented transport pro-
vider as a detailed example.

Finally, the last section of the book, Chapter 13, covers the design of a SLIP
package for SVR4, including both the user-level and kernel-level components. It
illustrates the application of much from the preceding 12 chapters and, in essence,
ties the book together.

Much of the interesting material lies in the examples. You are encouraged
to work through each until it is understood. Source code for the examples
is available via anonymous FTP from the host ftp.uu.net in the file
published/books/rago.netprog.tar.Zz. If you don’t have direct access
to the Internet, you can use uucp to copy the source to your machine as follows:

uucp uunet!”/published/books/rago.netprog.tar.z /tmp

(This will place a copy of rago.netprog.tar.Z in /tmp on your system.) If
you have any comments, questions, or bug reports, please send electronic mail to
sar@plc.com.
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1

Introduction
to Networks

This chapter discusses the motivation behind networking and some of the charac-
teristics of various networks that we will encounter throughout the rest of this book.

1.1 BACKGROUND

A network can be loosely defined as the hardware and software that enable two enti-
ties to communicate. Humans can communicate over a telephone network. Central
processing units in a multiprocessor can communicate over internal system buses.
While these systems can be considered networks, this text is concerned only with
communicating entities that are independent computer systems (often called hosts).

Computer networks are popular for many reasons. They provide a cost-
effective alternative to large computing facilities. Rather than place all users and
their files on a large mainframe, the users can be distributed among smaller, less
expensive computers. By connecting these smaller machines with a network, the
same level of sharing can be attained as if everyone were on one big machine.

Networks allow the separate computers to share files, devices such as printers
and plotters, and other computing facilities, such as processing ability. Users can
exchange electronic mail over a network. Computer systems can be administered
remotely, over a network.

Because of networks, computers can be placed in the locations that best fit the
organizations that use them, instead of the other way around. Geographical freedom
allows organizations to structure themselves in ways that allow them to accomplish
their goals more effectively.

Reliability is another benefit of using computer networks. While one computer
is unavailable for processing, because it is either overloaded or out of service, pro-
cessing can be redirected to another computer on the network. Services previously
provided by a single computer can be distributed over several.



