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Mechanics of Solids and Fluids



To the Students Who Accept the Challenge of Science
and to My Children Robert and Eva C.



Preface

This book offers a unified presentation of the concepts and most of
the practicable principles common to all branches of solid and fluid
mechanics. Its design should be appealing to advanced undergraduate
students in engineering science and should also enhance the insight
of both graduate students and practitioners. A profound knowledge
of applied mechanics as understood in this book may help to
cultivate the versatility that the engineering community must
possess in this modern world of high-technology.

This book is, in fact, a reviewed and extensively improved
second edition, but it can also be regarded as the first edition in
English, translated by the author himself from the original German
version, "Technische Mechanik der festen und flissigen Kérper,"
published by Springer-Verlag, Wien, in 1985.

Although this book grew out of lecture notes for a three-
semester course for advanced undergraduate students taught by the
author and several colleagues during the past 20 years, it contains
sufficient material for a subsequent two-semester graduate course.
The only prerequisites are basic algebra and analysis as usually
taught in the first year of an undergraduate engineering curriculum.
Advanced mathematics as it is required in the progress of
mechanics teaching may be taught in parallel classes, but also an
introduction into the art of design should be offered at that stage.
The book is divided into 13 chapters that are arranged in such a way
as to preserve a natural sequence of thought and reflections. Within
a single chapter, however, the presentation, in general, proceeds
from the undergraduate to intermediate level and eventually to the
graduate level.

The first three chapters are devoted to the basic components
of the mechanical modeling of systems at rest or in motion. They are
followed by a chapter on constitutive relations ranging from Hooke's
law and Newtonian fluids to that of visco-plastic materials. Vector
and cartesian tensor notation is applied consequently, but one-
dimensional relations of standard material testing are always given
priority. Students familiar with the programming techniques of field
variables will have no difficulty following this text.

Kinematics of material points and particle fields including
both pathlines and streamlines, as well as the conservation of mass;
statics, providing experience with forces and stresses including
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hydrostatic pressure fields; mechanical work, and force potentials,
are the prerequisites that, in Chap. 5, allow early exposure to the
powerful principle of virtual work. Since force is recognized to be
flux in the potential field, even an extension to nonmechanical
systems with other driving agents becomes evident.

In the lengthy Chap. 6, material on linearized elastostatics is
assembled but selected to serve the needs of structural mechanics.
Thermal effects in beams, plates, and shells are given special
attention in relation to load stresses in order to prepare the student
for design considerations of the high-temperature environment of
modern structures. The elastic visco-elastic correspondence
principle serves as the vehicle for applying elastic solutions in
order to determine stationary creep and solve the associated
lifetime problems. At this stage, the Laplace transformation enters
like the previous considerations of Chap. 4 in the form of
operational calculus. Straight and curved beams, simple frames,
plates, and shells of revolution are considered; torsion and the Hertz
theory of contact are given special attention.

While disks and rings in stationary rotation are already
considered in elastostatics, the Euler-Cauchy equations of motion
are the starting point of Chap. 7 and highlight the transition from
the statics of a material point at rest to the dynamics of a moving
point. The conservation of both momentum and angular momentum is
formulated for moving bodies enclosed in a material volume, and for
the flow through a control volume that is fixed in space, or for the
case in which the control surface is in prescribed motion.
Prerequisites are the Lagrangean and Eulerian kinematics of Chap. 1.
The control volume concept is immediately applied to determine the
guiding forces of stationary flow and to explain the thrust of
rockets and jet engines. Euler’s turbine equation is derived, and the
drag and propelling forces in a parallel viscous main stream are
determined. The vector of angular momentum is further defined for
rotating rigid bodies, and the generally valid formula for taking the
time derivative of a vector with respect to an intermediate
(rotating) reference frame is quite naturally derived. Euler’s
equations of gyros are discussed as well. In connection with the
material on rigid-body kinematics of Chap. 1, the important field of
(nonlinear) multibody dynamics (eg of vehicles and satellites) is
addressed. Sections on linear and nonlinear vibrations present not
only useful integration techniques in both the time and frequency
domain, but also illustrate pure dynamic phenomena, like resonance
and phase shift. Blake’s logarithmic diagram is introduced.

The coupled equations of motion of an unbranched chain of
spring-mass systems are derived by means of Newton’s law, and the
modal properties of its natural vibrations are determined by means
of the Holzer-Tolle procedure. Stodola’s matrix iteration scheme is
sketched in Exercise A 11.11. The practically important design of
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vibrational absorbers is considered in general in Chap. 7 and for
torsional vibrations in Chap. 10.

Using the free-body diagram of a high beam element, the
partial differential equations of a vibrating Timoshenko beam are
derived. Plane body waves and the associated linear eigenvalue
problems and the Rayleigh surface wave are included in this chapter
to enhance the understanding, eg of ultrasonic techniques. They are
applied in material testing and for medical diagnosis. Seismic
waves, namely, the loadings in earthquake engineering, should be
mentioned here, as well as the water hammer in hydraulic
engineering. Some illustrations are given in Chap. 11 and 12.

A first integral of the equations of motion is useful for both
solids and fluids. A first example, the planar pendulum, is already
analyzed along these lines of general validity in Chap. 7. Thus, in
Chap. 8 not only the work theorem of dynamics and its special form
of conservation of mechanical energy is derived by proper
integration over the material volume, but also integration performed
along a given streamline, keeping the time constant, renders the
generalized Bernoulli equation of fluid dynamics. The latter is
specialized to the stationary flow of ideal fluid and recognized to be
the law of conservation of the specific mechanical energy of a
particle moving along the streamline and pathline. Interpretations of
hydraulic measurements of stationary flow are given by means of
that original Bernoulli equation. Generalizations to include the
power supply of a stationary stream and, thus, the loss of pressure
head of a guided ideal flow through a turbine or the pressure gain of
a flow through a pump and the loss of energy head in a viscous
stream are discussed in some detail. Relative streamlines with
respect to a stationary rotating reference frame are considered, and
a proper form of a Bernoulli-type equation is derived to further ease
the application of fluid dynamics to rotating machines. The
extension to the first law of thermodynamics (of material and
control volumes) concludes that introductory chapter on energy
conservation, and it is hoped that the gap between the mechanics
course and a parallel course on thermodynamics is thereby
somewhat narrowed. The Clausius-Duhem inequality is only
mentioned. Fourier’s law of heat conduction, however, as an outcome
of an irreversible process is stated and applied in Chap. 6.

Chapter 9 on stability starts out with the derivation of the
Dirichlet criterion in an energy norm by means of small
perturbations applied to a conservative mechanical system at rest.
Thus, the dynamic nature of instability is stressed from the very
beginning. The conservation of mechanical energy of the perturbing
motion and the assumption of minimal potential energy of the
equilibrium configuration render the proper inequalities that bound
the kinetic and potential energy in the nearfield of the equilibrium
configuration. Bifurcation, snap-through, and imperfection
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sensitivity are discussed and well illustrated in the load factor
deformation diagram. The Euler buckling of slender columns and the
buckling of plates are generally discussed; further examples are
given in Chap. 11. In addition, the method of small perturbations is
applied to consider the stability of a principal motion.

The limits of stability of ductile structures are discussed and
the ultimate loads of simple beams and frames determined. Safety
analysis within structural mechanics like a cross-sectional and
plastic system reserve follows quite naturally. Melan-Koiter’s
shake-down theorems are formulated and applied to a plastic thick-
walled spherical pressure vessel under lifepressure loading.
Consideration of the stability of an open-channel flow and of
instability as a result of flutter round off this first overview based
on phenomena, rather than mathematics.

The knowledge of dynamics of MDOF-systems is further
expanded in Chap. 10, where the Lagrange equations of motion (of the
second kind), the outcome of the more general D’Alembert’s
principle are presented. The latter is derived in quite the same
fashion as the principle of virtual work in statics. Only dynamic
systems under holonomic constraints are considered and a few
applications to vibrational systems given. A spring-mounted
foundation in coupled translational-rotational motion is treated in
some detail to illustrate the dangerous beat phenomenon. Parametric
excitation is shown to occur in a pendulum with a periodically
moving support. Matrix structural dynamics is encountered when
considering a simple beam with lumped masses.

The principle of virtual work as presented in Chap. 5 and 10 is
the basis for the important approximation techniques and
discretization procedures associated with the names of Rayleigh,
Ritz, and Galerkin. Chapter 11 offers a rather complete account from
a purely mechanical standpoint and also gives a short introduction
to the finite-element method (FEM). Convergence in the mean square
of the outcome of the Galerkin procedure is conserved if the
equations of equilibrium or motion containing the forces are subject
to approximations. A generalized form is discussed that makes
application as convenient as the original Ritz approximation. Any
practical application of some complexity, however, requires further
consultation of the specialized literature and a gradual buildup of
experience. Priority is given in this context to examples in which
additional mechanical insight can be gained: For example, the
buckling of a slender rod under the influence of a Winkler foundation
exhibits mode jumping, and flexural vibrations under moving load
excitation illustrate another type of effective structural bending
stiffness in addition to critical speeds, to name just two
illustrations of considerable engineering importance. The reduction
in time of a nonlinear ordinary differential equation of motion is
shown by the Ritz-Galerkin approximation of the Duffing oscillator,
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by harmonic balance, and by means of the Krylow-Bogoljubow
approximation.

In Chap. 12, which deals with impact dynamics, most of the
material is related to the simplest possible modeling. The exchange
of momentum is assumed to be a sudden process, ie the velocity
fields of the colliding masses suffer a jumplike redistribution. Only
the two extreme physical cases of idealized elastic impact with
conservation of total mechanical energy and the inelastic impact of
extreme dissipation are elaborated within that context. To
illustrate and justify some of these assumptions, a thin elastic rod
of finite length is considered, taking into account the back and forth
running waves following a short and hard impact. Thereby, the sound
speed of rods is introduced, in addition to the wave speeds derived
in Chap. 7. Similarly, water hammer in a suddenly shut down lifeline
is reconsidered, examining the compressibility of the fluid and the
elasticity of the walls of a cylindrical pipe. The crude
approximation derived in Chap. 7 for a draining pipe may be seen as
limited to the quasistatic closure of the gate. The sound speed in
that case depends on the stiffness of springs in a series connection.

The last, Chap. 13, completes to some extent the discussion of
fluid dynamics. More important, the lift exerted on a body in an ideal
flow is related to circulation, in addition to being just the result of
the surface tractions. The Navier-Stokes equations of viscous flow
and their nondimensional form are explored, providing further
motivation for the introduction of the Reynolds” and Froude’s
numbers. Similarity solutions with respect to the drag coefficient,
the viscous flow through a pipe, and the boundary layer of a flow
along a semiinfinite plate are the few applications possible due to
the limited length of this book. Since the singular nature of
perturbation of the ideal flow through viscosity becomes evident in
many cases to be limited to the boundary layer, the importance of
the outer flow that may be assumed the ideal is recognized.
Therefore, potential flows are discussed and some fields of
streamlines derived. The singularity method is a major tool of
analysis and its basic idea is sketched; the formulas of Blasius are
then derived. The force exerted on a body by a von Karman street of
vortices is calculated and the Strouhal number introduced. The
boundary value problem of kinematic waves excited in a fluid strip
of finite depth by a moving rigid and linear elastic wall is solved to
illustrate one of the important interaction problems and to show
mode coupling. The Mach number and supersonic flow of gas
dynamics are discussed by considering the isentropic outflow of gas
through a nozzle from a pressure vessel.

Each chapter not only contains more or less concise
derivations, but also exclusively shows practical applications. A
book on mechanics cannot be read like a novel. The reader is
expected to work out examples with paper and pencil or a personal
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computer and to have a good command of a suitable programming
language, eg FORTRAN. Exercises are presented in an appendix to
each chapter. Some test general problem-solving skills, some
contain new material. However, hints when possibly needed are
always given, together with complete solutions. Other collections of
examples should be consulted.

This book was influenced by the standards of teaching
mechanics at Northwestern University, Stanford University, and
Cornell University, schools the author visited several times and in
the order cited. It is a textbook designed for classroom teaching or
self-study, not a treatise reporting new scientific results. The
author is obviously indebted to many investigators over a period of
more than two centuries, as well as earlier books on mechanics.
Extensive bibliographies may be found in the Encyclopedia of
Physics, published by Springer-Verlag, Berlin, and various handbooks
of engineering mechanics and fluid mechanics. Also, the regular
volumes of Applied Mechanics Reviews , published by ASME, New
York, should be consulted. The classic textbooks written by the late
Professor Timoshenko must be mentioned here. The first edition of
this book published in German by Springer-Verlag Wien, had its roots
in H. Parkus’s Mechanics of Solids (in German). Most of the figures of
the first edition have been used to illustrate this book. The author is
indebted to several colleagues at the Technical University of Vienna
for promoting this book in their classes and to a number of former
graduate students, including Dr. P. Fotiu (UC-San Diego), Dr. N. Hampl
(now with Getzner Chemie), Dr. R. Hasenzagl (now with Control
Data), Dr. H. Hasslinger (now with AMAG), Dr. H. Hayek, Dr. R. Heuer,
Dr. F. Héllinger (now with the Danube-Power), Dr. H. Irschik
(Professor of Mechanics, U-Linz), Dr. F. Rammerstorfer (Professor of
Light-Weight Structures and Aircraft Design), Dr. W. Scheidl (chief
engineer of Elin). Their encouragement and helpful criticism and the
numerous other contributions by students of civil and mechanical
engineering made this book possible.

The author is indebted to the reviewers who enthusiastically
suggested the publication of this text by Springer-Verlag, New York
and, last but not least, to the engineering editor and his staff for
copyediting and valuable technical advice during the preparation of
the camera-ready manuscript. The latter the author himself
completed using an Apple Macintosh Il, with Microsoft Word and
Expressionist. My thanks go to my wife, Dr. Waltraud Ziegler, for her
patience and linguistic advice.

Please forward any suggestions that might lead to an
improvement of the text to the author or Springer-Verlag.

Franz Ziegler
Vienna, Austria
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