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Preface

This book is based on the lectures given by Professor R. K. Osborn in
two consecutive gradnate courses on the applications of quantum mechanics
to problems encountered in nuclear engineering. The manuscript, mostly
in his handwriting, had been completed and submitted to the publisher
shortly before the author suddenly passed away in February 1987. We, his
students and colleagues, decided to go ahead with the publication of the
book on his behalf.

During the editing process, we have interfered with the content and
style of the manuscript as little as possible. Professor Osborn’s approach
to teaching quantum mechanics to nuclear engineering students represents
a novel point of view in that it introduces the necessary concepts and tools
of quantum mechanics using the density matrix formalism, and illustrates
their utility by considering only those problems that are relevant to nu-
clear engineering (in a broad sense). In this respect, this book is very
different from, and complimentary to, the existing text books on quantum
mechanics, both in approach and content.

We dedicate our efforts in the publication of this book to the memory
of this great teacher.

1988 A. Ziya Akcasu
Juan Carlos Lopez
George C. Summerfield
Sidney Yip
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Chapter 1

Introduction

The primary purpose of this book is to examine in an introductory,
but quantitative way, some of the details of neutron-nuclear reactions. A
necessary subsidiary to this purpose is some study of nuclear structure per
se. And, since the subject at hand dwells in the realm of the microscopic
rather than the macroscopic, it will be necessary to view it from the per-
spective of quantum mechanics rather than classical mechanics.

This point needs emphasis — the distinction between classical and
quantum mechanics is merely one of perspective. Whatever the real world
is all about, it has not changed in the past hundred years. But the tech-
niques for observation and measurement have been enormously refined and
enlarged, requiring a corresponding refinement and enlargement of our per-
spective on natural phenomena to facilitate interpretation and understand-
ing. No doubt, further refinement and enlargement will be called for in the
future.

The modification of perspective from classical to quantum, which
was largely initiated and completed in the first quarter of this century, was
sparked by a number of failures of the classical viewpoint. First of all,
spectral analysis of the radiation from black bodies became precise enough
that clear discrepancies between observation and classical theory were ap-
parent. Planck resolved the matter (crudely speaking) by assuming that
the energy states of the radiation field were discretely distributed, rather
than continuously. Then significant differences appeared between theory
and observation of specific heats of solids at low temperatures. So Einstein
borrowed Planck’s idea and assumed discretely distributed oscillator energy
states for the atoms in the solid with consequent marked improvement in
agreement between theory and measurement. At the same time, the dis-
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2 Applied Quantum Mechanics

creteness of the radiation emitted by atoms was giving classical theory fits.
So Bohr borrowed from Planck and Einstein, added a few refinements of
his own, and came up with the idea of discretely distributed energy states
for the electrons in atoms. What was emerging was a clear call for a new
perspective — one that recognizes the possibility, if not probability, that
the states accessible to real systems are discretely, not continuously, dis-
tributed. Since the rules, axioms, or whatever extant at the time could not
encompass this new awareness; new rules had to be invented — to include
the old ones when applicable but to open up the possibility of interpreting
the seemingly fundamental discreteness of natural phenomena when neces-
sary. These new rules for guiding perspective constitute what has come to
be called the quantum mechanics.

In an attempt to clarify this matter somewhat, let us consider the
classical view of the motion of a point particle of mass, m, moving in a
central force field describable by a potential, V' (r).

€3

€2

€

Fig. 1.1.

The rules employed in this situation are usually borrowed from
Newton, and read

d
—P=F=-VV,
P=mv, (1.1)
_d
—(—i—t‘l‘.

If V is a function of the magnitude of r only, then

v
= ——-—VV - —Fr— .
F o (1.2)



Introduction 3

so that, for an attractive force, 9V /dr must be positive. In this instance
we observe that the total energy of the particle is a constant of the motion,

le.:

i _,
dt ’
where
H= %mv2+V. (1.3)

That the angular momentum is another constant of the motion is also easily
established, i.e.,

iLzerzo, where
dt

(1.4)
L=rxmv.
Since
L?=(rxP) (rxP)
=r2pP?— (r-P)3, (1.5)
we may display the total energy (recall Eq. (1.3)) as
(r P)? T2
e ; 1.6
o 2m + 2mr2 +V(r) (1.6)

To proceed further, and for the sake of explicitness, let us assume that
V = —Ze?/r and note that T - P = ms and display

=, (1.7)

The turning points of the orbits are the values of r satisfying Eq. (1.7)
when r = 0.

Now the crux of the matter is that, according to these arguments,
there is a continuum of elliptic orbits and a continuum of hyperbolic orbits.
But numerous observations on systems of this kind (hydrogen-like atoms)
have clearly demonstrated that, at least, the bound (elliptic) orbits (states)
are discretely distributed. Thus we must modify our perspective of this
situation in order to accommodate these observations. Experience has
revealed that the modifications required are probably at least as subtle and
extensive as those discussed below and numerously applied throughout the
remainder of these lectures.

In order to facilitate the introduction and delineation of the requi-
site change in viewpoint, it is convenient to contemplate for a moment the
notion of a measurement. A measurement often consists of a recording
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L?
2mr?
Turning point

for hyperbolic
orbit (H > 0)

Turning points
for elliptic

7 orbits (H < 0)
L? Ze* /
2mr? r /
yd
/
/ _Zé?
/7 r
/
/
/
/
Fig. 1.2

of many numbers, each purportedly a quantitative realization of the same
thing. Different observations often yield numbers of different magnitude,
so an average of the results is usually performed to obtain a statistically
significant estimate of the quantity to be measured. In other words, a mea-
surement often consists of an experimental determination of an expectation
value for the quantity of interest.

For example, suppose that {1 represents a quantity to be measured.
Apparatus would then be devised to provide a number of realizations of 2,
say {11,Qs,...,8;,... ,Qp, where N is the number of realizations for this
particular measurement. Since the number of significant figures available
by our apparatus is finite, if N is sufficiently large we find that many
realizations are the same. That is, {2; may occur n; times, and the ratio,
nj/N, is an experimental estimate of the probability of realizing {2; in a
given try. Call this probability Pyeas((2;) Le.,

Preas(25) = nj; /N . (1.8)
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The experimental estimate of an expectation value for the quantity to be
measured is thus

w = Z Q; Poeas (), (1.9)

where the sum runs over those values of j for which the Q; are all different.
We note in passing that the variance of this measurement is

‘/meas = Z Q?Rneas(ﬂj) - (")2 . (110)
7

Whatever rules of mechanics we accept, they must be adequate to
guide us in interpreting measurements of this kind — as well as perhaps
some others. Thus the rules must tell us how to compute the possible
realizations of an observation — the 1;’s, and also how to compute the
probabilities of realizing a given value of {1 in a single try — the P((Q;)’s.
Furthermore, in order to understand how systems evolve in time it will
also be necessary for the rules to tell us how to compute the probabilities
that the system will undergo transitions from one state to another. As
we have seen, the classical rules usually led us to the conclusion that the
possible results of observations are continuously distributed — a conclusion
contradicted by many studies, especially of microscopic systems.

The modern rules, which so far appear to fulfill all of these require-
ments quite successfully, and at the same time encompasses all of the old
rules, will be introduced now and subsequently in bits and pieces; and
extensively applied to a study of nuclear structure and neutron-nuclear
reactions. To understand the measurement described above, we require
first of all an operator, {1,},, to represent the quantity to be measured —
1. The eigenvalues of (1, will then represent the realizations of single
observations (the {2,’s) and hence must be real. (Do not be distressed if a
certain amount of unfamiliar terminology crops up from time to time. Such
matters will be clarified by examination and illustration subsequently.) It
is assumed that the eigenfunctions, |7), of €,,, which satisfy the equations

Qopl7) = Q417) (1.11)

form a complete set.

Next we require a rule for the computation of the probabilities of
realizing a given (1; in a single try. At the present time the rule states
that these probabilities are given by the diagonal “matrix elements” of a

probability operator, D, i.e.,

P!l\eor(nj) = <.7|D| .7') . (1‘12)
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By axiom, this probability operator is to be computed according to the

Liouville equation, i.e.,

dD i

= = 7 (DH — HD)

Il

St e Dk e

(D, HJ, (1.13)

where H is the system Hamiltonian (or energy operator — recall Eq. (1.6)
for a particle in a central force field). Finally, the theoretical expectation
value of (1, to be compared with the measured one displayed in Eq. (1.9),
is to be computed according to

w = Z Q]'Ptheor(ﬂj)
- ZU']QOPIJ‘)(J'IDI 7
= 3 (2310601 (7101 )

]’

=TrQu,D , (1.14)

since the representation, {|j7)}, diagonalizes the operator, ,,. The
notation, Tr{l,,D, means to take the trace (sum of diagonal elements)
of the matrix product of the matrix elements of {},, and D.

This is about all of the rules we are going to need. The remainder
of our task will be to clarify them somewhat, and implement them for
application to specific cases. Initially, we concentrate on rule one — on
the construction of operator representatives for observables and then the
determination of their eigenfunctions and corresponding eigenvalues (pos-
sible results of observations). However, to assist us in this task we first
note that, according to Eqgs. (1.14) and (1.13),

‘Z_j - Tmo,,%
_ %Tr Qop(DH — HD)
= 2 (Tr HOpD ~ Tr 0,y HD)
e %T}(Hﬂop — QopH)D

)

= Tt H, QoD (1.15)
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where we have assumed that Q,, itself is not explicitly time-dependent.

Puirely for the sake of illustration, let us consider the problem of con-
structing operator representatives for the position, momentum, and energy
of the previously discussed particle moving under the influence of a central
force. At the outset we must note that this matter of identifying appropri-
ate operator representatives of observables need not be accomplishable in a
unique way. Furthermore, it is precisely with respect to these matters that
we must proceed by a considerable exercise of ingenuity and guess work.
For example, we might first guess that we can (in this instance) be guided
by classical arguments in identifying the energy operator, i.e.,

P2
H= % +V. (1.16)

So far so good, but what do we mean by the operators P and V (or r, the
position operator)? That is, what are the operands of P and r, and what
is the manner in which P and r operate upon their respective operands?

To illustrate terminology a little, consider a few common (and famil-
iar) examples of operators and operands.

(a) Multiplication (the multiplication of f by g to produce h):

gf —h

/ N\

operator operand
(b) Differentiation:

d . flz+Az)— f(=)
7 )=l Az — hfs)

operator operand

(c) Integration:

/0 " dz §(#) — hly)

[S—

operator operand

(d) Matrix:

(o) (3)=(218) — ()
c/d fa) = \ cfi + dfz ha
i

operator operand

Note that all of these operators are linear. That is, if A is one of the
operators, f and g are operands, and o and § are numbers, then

Alaf + Bg) = aAf + fAg . (1.17)
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However not all of these operators commute with each other. That is, if A
and B are two operators and if f is an operand for each, then

[, B]f = (AB — BA)f #0

generally. For example
(a) Multiplicative operators commute by definition.
(b) Differentiation:

8 9 tni) = -2 pai

an dy dz
usually, so that
a d
Z Z|f=0
[3:1;’ Ey] /
But 3 3
hence g
l:zx a} f 7é
Actually
a
o 3s) 1=

(c) Matrices: If A and B are two matrices, then
AB—-BA=[A,B]=0

only in very special cases.

We return now to the task of identifying operator representatives
for momentum, P, and position, r, (or functions of position V (r)). As a
first guess, let us assume that r is a multiplicative operator — so also is
any function of r. But what about P? Consider the expected value (a
measurable quantity) of r, i.e.,

(ry=TrrD . (1.18)

By this we mean, as usual, that if {¢,,} is an appropriate, complete set of
functions, then

(m]|r|n) E/drdz;‘nrzﬁn and

(m|D|n) E/drtbanwn (1.19)
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are square arrays of numbers, and

(r)y =TrrD
= Z <Z (mr|n)(n IDlm>) : (1.20)

Now, as indicated by Eq. (1.15), we have

a )
- =, .21
% (r) hTr[H,r]D (1.21)
which, according to Eq. (1.16), becomes

2 )= [P—2 +Vr] D

Il

% [Tr [;,rJ D + Tx[V, r]D] : (1.22)

We have agreed to treat r (and hence V(r) also) as a multiplicative oper-
ator, thus

V,r] =0 (1.23)
and 5 ) p2?
= {r) = %’n [%r] D. (1.24)

The mass of the particle, m, is just a number; and consequently to be
regarded as a multiplicative operator. It is easily shown that, for any two
operators A and B,

[A%,B] = A[A,B] + [A,BJA. (1.25)
Hence, Eq. (1.24) reads
o] 1
a(ﬂ = TT%{PJ‘[PJ'»I'] +[P;,r|P;}D . (1.26)
Clearly P has to be identified as an operator that does not commute with

d(r)/dt = 0 which is most unreasonable. Instead, guided again by expe-

rience, we would like (or expect)

= =(P). (1.27)



