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While work on this new expanded edition was progressing, Springer-Verlag
implemented a new concept for the Encyclopaedia of Mathematical Sciences.
Part of this is the new subseries Mathematical Physics. A consensus between
the editor of this volume, the editors of this new subseries, and Springer-
Verlag was quickly established that this volume should become part of the
Mathematical Physics subseries.
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Preface to the Second Edition

The first edition of this Encyclopaedia volume was published as Encyclopae-
dia of Mathematical Sciences Volume 2, “Dynamical Systems II”. For this
second edition, published as the first volume of the “Mathematical Physics”
subseries, two new parts have been added, comprising the contributions by
S.G. Dani and J. Smillie.

R.L. Dobrushin and N.B. Maslova, who played a very essential role in
the first edition, passed away during the last few years. Their contributions
have been left unchanged. The parts by L.A. Bunimovich, M.V. Jakobson
and Ya.B. Pesin were essentially revised, updated and extended. In the other
contributions of the previous volume some additional references have been
added and some stylistic changes have been carried out.

The authors would like to thank J. Mattingly for his critical reading of the
manuscript.

December 1999 Ya.G. Sinai



Preface

Each author who took part in the creation of this issue intended, according to
the idea of the whole edition, to present his understanding and impressions
of the corresponding part of ergodic theory or its applications. Therefore the
reader has an opportunity to get both concrete information concerning this
quickly developing branch of mathematics and an impression about the variety
of styles and tastes of workers in this field.

Ya.G. Sinai
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Chapter 1
Basic Notions of Ergodic Theory and Examples
of Dynamical Systems

I.P. Kornfeld, Ya.G. Sinai

§ 1. Dynamical Systems with Invariant Measures

Abstract ergodic theory deals with the measurable actions of groups and
semigroups of transformations. This means, from the point of view of applica-
tions, that the functions defining such transformations need not satisfy any
smoothness conditions and should be only measurable.

A pair (M, #) where M is an abstract set and .# is some g-algebra of subsets
of M, is called a measurable space. In the sequel M will be the phase space of a
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Chapter 1
Basic Notions of Ergodic Theory and Examples
of Dynamical Systems

I.P. Kornfeld, Ya.G. Sinai

§ 1. Dynamical Systems with Invariant Measures

Abstract ergodic theory deals with the measurable actions of groups and
semigroups of transformations. This means, from the point of view of applica-
tions, that the functions defining such transformations need not satisfy any
smoothness conditions and should be only measurable.

A pair (M, #) where M is an abstract set and .# is some o-algebra of subsets
of M, is called a measurable space. In the sequel M will be the phase space of a
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dynamical system. The choice of .# will always be clear from the context. We

shall make use of the notions of the direct product of measurable spaces and of
#-measurable functions.

Definition 1.1. A transformation T: M — M is measurable if T7'C e .# for
anyCe #.

A measurable transformation T is also called an endomorphism of the measur-
able space (M, .#). Any endomorphism generates a cyclic semigroup {T"} of
endomorphisms (n =0,1,2,...).

If T is invertible and T~* (as well as T) is measurable, then T is said to be an
automorphism of the measurable space (M, .#). Any automorphism generates the
cyclic group {T"} of automorphisms, —o0 < n < oco.

A natural generalization of the above notions can be achieved by considering
an arbitrary countable group or semigroup G and by fixing for each g€ G a
measurable transformation T, suchthat T, - T, = T, , forallg,,g, € G, T, = id.

Definition 1.2. The family {7}, g € G, is said to be a measurable action
of the countable group (semigroup) G.

The simplest example is as follows. Suppose that (X, ") is a measurable
space and M is the space of all X-valued functions on G, i.e. any x € M is
a sequence {x,;}, x, € X, g € G. For any gy € G define the transformation
Ty, M — M by the formula 7, x = x’, where x;, = x,,. In this case {7}
is called a group (semigroup) of shifts. In particular,

1) if G is the semigroup Z} = {n: n > 0, n is an integer}, then M is the space
of all 1-sided X-valued sequences, i.e. the points x € M are of the form x = {x,},
x,€ X,n>0,and T,,x = {X,4m}, me Z}. T, is called a 1-sided shift.

2) if G is the group Z' = {n: —0 < n < oo, n is an integer}, then M is the
space of all 2-sided sequences x = {x,}, x,€ X, —o0 <n< o0, and T,x =
{Xp+m}, me Z'. T, is called a 2-sided shift, or, simply, a shift.

3) if G = Z% = {(ny,n,,...,n5):m; € Z',1 <i<d},d > 1, then M is the space
of all sequences x of the form x = {x,} = {x, ., }, while T"x = {x,,,.},m =
{my,...,my} € Z°

The above examples arise naturally in probability theory, where the role of M
is played by the space of all realizations of d-dimensional random field.

Now suppose G is an arbitrary group or semigroup endowed with the structure
of measurable space (G,¥%) compatible with its group structure, i.e. all trans-
formations T, : g+ gog (9,9, € G) are measurable.

Definition 1.3. The family {7, : M — M}, g € G, where G is a measurable
group, is called a measurable action of the group G (or a G-flow) if

)T, T, ="T,,foralg,,g,€G;

2) for any .#-measurable function f: M — R' the function f(T,x) considered
as a function on the direct product (M, .#) x (G, %) is also measurable.

Our main example is G = R' with the Borel o-algebra of subsets of R!
as . There also exist natural examples with G = R, d > 1 (cf Chap. 12).
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Let now G = R™. If T" is the transformation in R!-flow corresponding to a
t € R, then we have T". Tz = T***'2, We will describe a natural situation in
which the actions of R! arise.

Suppose M is a smooth compact manifold and « is a smooth vector field on
M. Consider the transformation T* sending each point x € M to the point T*x
which can be obtained from x by moving x along the trajectory of « for the period
of time ¢t (T" is well defined because of compactness of M). Then T"1*'z = T" - T*"2
and T'is a measurable action of R*.

Measurable actions of R* are usually called flows, and those of R} —semiflows.
The cyclic groups and semigroups of measurable transformations are also known
as dynamical systems with discrete time, while flows and semiflows are known as
dynamical systems with continuous time.

Now, let (M, .#, pu) be a measure space (probability space), i.e. (M, .#) is a
measurable space and u is a nonnegative normalized (z(M) = 1) measure on ..
Consider a measure v on # given by v(C) = u(T'C), C € .#. This measure is
said to be the image of the measure y under T (notation: v = Tp).

Definition 1.4. A measure yu is invariant under a measurable transformation
T-M->Mif Tu=p

If g is invariant under T, then T is called an endomorphism of the measure space
(M, #, p). If, in addition, T is invertible, it is called an automorphism of (M, 4, p).
If {T'} is a measurable action of R' and each T", —o0 <t < oo, preserves the
measure u, then {T*} is called a flow on the measure space (M, .#, p).

Now consider the general case.

Definition 1.5. Let {T,} be a measurable action of a measurable group (G, %)
on the space (M, ). A measure u on .# is called invariant under this action if,
for any g € G, p is invariant under T,.

We now introduce the general notion of metric isomorphism of dynamical
systems which allows us to identify systems having similar metric properties.

Definition 1.6. Suppose (G, %) is a measurable group and { TV}, { T?} are two
G-flows acting on (M,, .#,), (M,, #,) respectively and having invariant mea-
sures uq, Up. Such flows are said to be metrically isomorphic if there exist
G-invariant subsets M; c M,, M, c M,, u,(M}) = p,(M5) = 1, as well as an
isomorphism ¢: (M}, #,,u,) — (M5, #,, 1) of measure spaces M;, M} such
that TP pxM = ¢ TVx™" for all g € G, x'" € M;.

Ergodic theory also studies measurable actions of groups on the space
(M, #, ) which are not necessarily measure-preserving.

Definition 1.7. Suppose {T,} is a measurable action of a measurable group
(G, %) on (M, .#). The measure u on 4 is said to be quasi-invariant under this
action if for any g € G the measure pu, &t T,u, ie. the image of u under T, is
equivalent to u. In other words, 4 and T,u have the same sets of zero measure.



