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Preface

This book grew out of notes from a differential geometry course taught
by the second author at Northwestern University. It aims to provide an
introduction, at the level of a beginning graduate student, to differential
topology and Riemannian geometry. The theory of differentiable dy-
namics has close relations to these subjects. We introduce basic concepts
from dynamical systems and try to emphasize interactions of dynamics,
geometry and topology.

We have attempted to introduce important concepts by intuitive dis-
cussions or suggestive examples and to follow them by significant appli-
cations, especially those related to dynamics. Where this is beyond the
scope of the book, we have tried to provide references to the literature.

We have not attempted to give a comprehensive introduction to dy-
namical systems as this would have required a much longer book. The
reader who wishes to learn more about dynamical systems should turn
to one of the textbooks in that area. Three excellent recent books, with
different emphases, are the texts by Brin and Stuck (2002), by Katok
and Hasselblatt (1995), and by Robinson (1998).

The illustrations in this book were produced with Adobe Illustrator,
DPGraph, Dynamics Solver, Maple, and Sierpinski Curve Generator.
We thank Victor Donnay, Josep Masdemont, and John M. Sullivan for
permission to reproduce some of the illustrations.
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Chapter 1

Manifolds

1.1 Introduction

A manifold is usually described by a collection of ‘patches’ sewed
together in some ‘smooth’ way. Each patch is represented by some para-
metric equation, and the simoothness of the sewing means that there are
no cusps, corners or self-crossings.

As an example, we consider a hyperboloid of one sheet 22 +y% —2% = 1
(see Figure 1.1.1 (a)). The hyperboloid is a surface of revolution, ob-
tained by rotating the hyperbola z? — z? = 1, lying in the (z,z)-
plane, about the z-axis. The hyperbola can be parametrized by ¢ —
(cosht,0,sinht), so the hyperboloid of revolution is given by the differ-
entiable parametrization

¢(t,0) = (coshtcosf, coshtsing,sinht), —oco <t < 00, —00 < f < oo.

We would like to have each point (z,y, ) of the hyperboloid uniquely
determined by its coordinates (t,6) and, conversely, each pair of coor-
dinates (¢,6) uniquely assigned to a point. This does not work for the
above parametrization, since the points of the hyperbola z? — 22 = 1,
y = 0, correspond to all (¢,0) with 6 an integer multiple of 2r. We can
get parametrizations that are one-to-one by restricting the mapping ¢
to certain open subsets of RZ:

$1(t,0) = (coshtcos 0, coshisinf,sinht), —oo <t < 00,0 <6 < 37/2,

¢2(t,0) = (coshtcosf,coshtsing,sinht), —oo <t < oo, m <0 <5m/2.

Note that the image of each ¢; is the intersection of the hyperboloid
with some open set in R?. In cylindrical coordinates (r,0, z) on R3, the
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(a)

FIGURE 1.1.1
Hyperboloid of one sheet.

image of ¢; represents the portion of the hyperboloid inside the open
region 0 < 6 < 37/2, and the image of ¢, represents the portion of the
hyperboloid inside the open region 7 < 6 < 57/2.

Since the mappings ¢, and ¢ are differentiable, the images of ¢ and
¢o are smooth patches of surface.

The following properties are at the core of the general definition of a
manifold:

e Each ¢; is an injective map, and qﬁ;l is continuous, that is, qSi_l is
the restriction to the hyperboloid of a continuous map defined on
an open set in R®. This condition ensures that the surface does
not self-intersect.

e For each ¢;, the vectors 0¢;/0t, O¢; /00 are linearly independent.
This condition ensures that there is a well defined tangent plane
to the surface, spanned by these two vectors, at each point.

A subset S of R? together with a collection of smooth parametrizations
whose images cover S and which satisfy the above properties is called a
regular surface.

The images of ¢ and ¢o are sewed together along two regions cor-
responding to 0 < € < n/2 and to 7 < 6 < 37/2, in the following
sense:

e In the regions where the images of ¢; and ¢, overlap, the mapping
¢1 can be obtained from the mapping ¢2 by a smooth change of
coordinates, and ¢3 can be obtained from ¢; by a smooth change
of coordinates. This means that there exist mappings 01, and 6,1,
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defined on appropriate open domains in R?, such that ¢o = ¢ 0612
and ¢1 = ¢, o fz1. Moreover, 612 and 03, are each the inverse
mapping of the other.

Indeed, ¢o(t,0) = ¢1(t,0) for all (¢,0) with ¢t € R and 7 < 6 < 7/2, and
$a(t,0) = ¢1(t,0 — 27) for all (¢,0) with ¢t € R and 2w < 6 < 57/2. The

corresponding smooth change of coordinates
612 : R x [(m,37/2) U (27, 57/2)] — R x [(7,37/2) U (0, 7/2)]

is given by

D1a(1.0) = (t,0), fort € R and m < 0 < 37/2,
12ABP) 7 (t,0 — 2m), for t € R and 27 < 0 < 57/2.

Similarly, the change of coordinates
621 : R x [(m,37/2) U (0,7/2)] = R x [(7,37/2) U (27, 57/2)]
is given by

01 (1, 0) = (t,6), fort e Rand 7 < 6 < 37/2,
2T (t,0 + 27), for t e Rand 0 < 0 < /2.

These coordinate changes provide essential information about the sur-
face. As we will see in the next section, the above property is a corner-
stone of the definition of a manifold.

Finally, we notice that same surface can be described through differ-
ent collections of parametrizations. For example, consider a third local
parametrization of the hyperboloid, which agrees with the previous ones:

$3(t,0) = (coshtcosf, coshtsinf,sinht), —oco <t < oo, 7/2 < < 2m.

This patch lies on top of the other two, and it does not supply any new
information about the surface. Indeed, ¢3(t,0) = ¢1(,0) for all (¢,0)
with t € R and 7/2 < 0 < 37/2, and ¢3(t,0) = ¢2(t,0) for all (¢,6) with
t € R and 7 < @ < 2. Thinking of the hyperboloid as a collection of
smooth parametrizations, we have two equivalent representations: one
consisting of {¢1, ¢2}, and a second one consisting of {¢1, @2, ¢3}. There
are, in fact, infinitely many collections of equivalent parametrizations
describing the same surface. We can always choose one collection of
parametrizations as a representative.
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FIGURE 1.2.1
Open set in the plane.

1.2 Review of topological concepts

In the next section we will define manifolds. Unlike surfaces in Sec-
tion 1.1, manifolds are not necessarily embedded in Euclidean spaces.
Therefore, the ideas of nearness and continuity on a manifold need to
be expressed in some intrinsic way.

Recall that a mapping f : U C R™ — R" is continuous at a point
zo € U if for every € > 0 there exists § > 0 such that, for each z € U,

If(2) = f(zo)ll <€ provided [z — o <.

A mapping is said to be a continuous if it is continuous at every point
of its domain. A sufficient (but not necessary) condition for a mapping
f:UCR™ — R" defined on an open set U in R™ to be continuous is
that f is differentiable at every point zy € U.

Continuity can be expressed in terms of open sets. A set G C R™ is
open provided that for every xzg € G one can find an open ball

B(z0,6) = {z € R™ |||z — zo|| < 0},

that is contained in G, for some § > 0. See Figure 1.2.1. If X is a subset
of R™, a set G C X is said to be (relatively) open in X if there exists
an open set H C R™ such that G = HN X. A set is said to be closed if
its complement is an open set. One can easily verify that a mapping is
continuous on its domain if and only if, for every open set V C R", the
set f~1(V) is an open set in U. Equivalently, a mapping is continuous
on its domain if and only if for every closed set F C R", the set f~!(F)
is a closed set in U.
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Open sets are therefore essential in studying continuity. It turns out
that all familiar properties of continuous mappings can be proved di-
rectly from only a few properties of open sets, with no reference to the
€ — 6 definition. Those properties are at the core of the concept of a
topological space:

DEFINITION 1.2.1

A topological space is a set X together with a collection G of subsets
of X satisfying the following properties:

(i) The empty set O and the ‘total space’ X are in G;
(ii) The union of any collection of sets in G is a set in G;
(iii) The intersection of any finite collection of sets in G is a set in G.

The sets in G are called the open sets of the topological space. The
collection G of all open sets is referred to as the topology on X.

We will often omit specific mention of G and refer to a topological
space only by the total space X. Given a set A C X, the union of all
open sets contained in A is called the interior of A and is denoted by
int(A). The interior of a set is always an open set, possibly empty.

Example 1.2.2

(i) The Euclidean space R™ with the open sets defined as above is a
topological space.

(ii) If X is any set, the collection of all subsets of X is a topology on
X; it is called the discrete topology.

(iii) If X is a topological space and S is a subset of X, then the set .S
together with the collection of all sets of the type {SNG|G € G} is a
topological space. This topology is referred to as the relative topology
induced by X on S.

(iv) If X and Y are topological spaces, then the collection of all unions
of sets of the form G x H, with G an open set in X and H an open set in
Y, is a topology on the product space X x Y. This is called the product
topology. This definition extends naturally to the case of finitely many
topological spaces.

(v) Assume that X is a topological space and ~ is an equivalence rela-
tion on X. We define the quotient set X/ ~ as the set of all equivalence
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classes on X, and the canonical projection 7 : X — X/ ~ that sends
every element x € X into its equivalence class [z] € X/ ~. The set of
all U € X/ ~ for which 7#7(U) is an open set in X defines a topology
on X/ ~, called the quotient topology.

(vi) A distance function (also called a metric) on a set X is a function
d: X x X — R satisfying the following properties for all p,q,r € X:

(1) positive definiteness and non-degeneracy: d(p,q) > 0 and
d(p,q) = 0 if and only if p = ¢;

(2) symmetry: d(p,q) = d(q,p);
(3) triangle inequality: d(p,q) < d(p,r) + d(r, q).

A set X together with a distance function on it is called a metric space.
A metric space has a natural topology: a set G in X is defined to be
open provided that for every xg € G there exists § > 0 such that the
open ball

B(zo,0) = {z € X |d(z,z0) < 8}

is contained in G. A metric space is said to be complete if every Cauchy
sequence is convergent.

The natural topology on a Euclidean space is the topology induced
by the Euclidean distance.

In many instances, it is easier to describe the topology of a space by
specifying a certain sub-collection of open sets. A basis for a topology
g of X is a collection B C G of open sets with the property that every
set in G can be obtained as a union of sets from B. As an example, in
a metric space, the collection of all open balls is a basis for the metric
space topology. A sub-basis for a topology G of X is a collection S ¢ ¢
with the property that the collection of all finite intersections of sets in
S is a basis for G.

Example 1.2.3

Let X; be an infinite collection on topological spaces, whose topologies
are denoted by G;, respectively. On the cartesian product I1; X; we define
a topological basis as the collection of all sets of the type II;U;, where U;
is an open set in X; for each 4, and only finitely many of the sets U; are
different from X;. The product topology of II; X; is defined as consisting
of unions of sets of the above type. In the finite case, this topology is
the same as the one described in Example 1.2.2 (iv).
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The complement of an open set is said to be a closed set. Given a
set A C X, the intersection of all closed sets containing A is called the
closure of A, and is denoted by cl(A). The closure of a set is always
a closed set. For a set A, the boundary set is defined by bd(A) =
cl(A) \ int(A). The boundary of a set is always a closed set. If the
closure of a set is the total space, that set is said to be a dense set. A
closed set with an empty interior is called nowhere dense. For example,
if X = R with the natural topology, and A = Q, the set of all rational
numbers, then cl(A) = X, so A is dense. The set B = Z of all integers
is a nowhere dense set in X.

If f: X — R is continuous, the support of f is

supp(f) = o ({z| f(z) # 0}).

A set N C X is said to be a neighborhood of a point € X provided
that there exists an open set G with € G C N. A basis of neighbor-
hoods of a point € X is a collection V, of neighborhoods of x with
the property that every neighborhood of x contains some set from V.
As an example, the balls of the type B(x,1/n) in a metric space form
a basis of neighborhoods of z. One can completely describe a topology
by specifying a basis of neighborhoods for each point of the space.

The idea of nearness in a topological space can be expressed through
convergent sequences. A sequence (Z,),>0 in X is said to be convergent
to a point z € X provided that for every neighborhood V' of z, there
exists an integer ny such that all terms of the sequence x,, with n > ny
are contained in V. Unlike in R, the limit of a convergent sequence in a
topological space may not be unique. In order for the limit to be unique,
it is sufficient that for every pair of points x # y there exits a pair of
disjoint neighborhoods V,, of 2 and V,, of y. A topology satisfying this
condition is said to be Hausdorff.

There is a natural definition of continuity in the context of topological
spaces.

DEFINITION 1.2.4

Let X and Y be topological spaces. A map f: X — Y is continuous at
a point xo in X provided that f~*(V) is a neighborhood of xo for every
neighborhood V' of zo. A map f: X — Y is said to be continuous if for
each open set V in'Y, the set f=1(V) is an open set in X.

From calculus, we know that every continuous function on a closed
bounded interval is bounded and attains its minimum and maximum



