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PREFACE

This text is intended for a one-semester course in the calculus of functions of several
variables and vector analysis taught at the sophomore or junior level. Sometimes
the course is preceded by a beginning course 1n linear algebra, but this is not an
essential prerequisite. We require only the bare rudiments of matrix algebra, and
the necessary concepts are developed in the text. However, we do assume a knowl-
edge of the fundamentals of one-variable calculus—differentiation and integration
of the standard functions.

The text includes most of the basic theory as well as many concrete examples
and problems. Teaching experience at this level shows that it is desirable to omit
many of the technical proofs; they are difficult for beginning students and are in-
cluded in the text mainly for reference or supplementary reading. In particular,
some of the technical proofs for theorems in Chapters 2 and 5 are given in the op-
tional Sections 2.7 and 5.5. Section 2.2, on limits and continuity, is designed to be
treated lightly and is deliberately brief. More sophisticated theoretical topics, such
as compactness and delicate proofs in integration theory, have been omitted, because
they usually belong to and are better treated in a more advanced course.

Computational skills and intuitive understanding are important at this level, and
we have tried to meet this need by making the book as concrete and student-oriented
as possible. For example, although we formulate the definition of the derivative
correctly, it is done by using matrices of partial derivatives rather than linear trans-
formations. This device alone can save one or two weeks of teaching time and can
spare those students whose linear algebra is not in top form from constant head-
aches. Also, we include a large number of physical illustrations. Specifically, we
have included examples from such areas of physics as fluid mechanics, gravitation,
and electromagnetic theory, and from economics as well, although prior knowledge
of these subjects is not assumed.

A special feature of the text is the early introduction of vector fields, divergence,
and curl in Chapter 3, before integration. Vector analysis usually suffers in a course
of this type, and the present arrangement is designed to offset this tendency. To go
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even further, one might consider teaching Chapter 4 (Taylor’s theorem, maxima
and minima, Lagrange multipliers) after Chapter 8 (vector analysis).

This third edition retains the balance between theory, applications, optional
material, and historical notes that was present in the second edition. The bulk of
the changes for the third edition are as follows.

The exercises have been thoroughly reworked in conjunction with the writing of
a Study Guide by Fred Soon and Karen Pao. This guide contains complete solutions
to select exercises in the text (the numbers or letters of these exercises are shaded
for quick identification) as well as study hints and sample exams. The Study Guide
may be ordered by your bookstore from the publisher.

The exercises have been improved by a better progression according to level of
difficulty and a wider coverage of topics. Optional technical theorems on differentia-
tion and integration theorems have been moved from the appendixes to Chapters 2
and 5 and set in smaller type. The long chapter on integration theory has been split
into two, and a new section on applications of multiple integrals has been added.
Additional material on cylindrical and spherical coordinates has been included,
and the section on the geometric meaning of the divergence and curl has been sim-
plified. Other changes and corrections that improve the exposition have been made
throughout text. Many of these have come from readers of the second edition, and
we are indebted to them collectively for improving the book for the benefit of the
student.

PREREQUISITES AND NOTATION

We assume that students have studied the calculus of functions of a real variable,
including analytic geometry in the plane. Some students may have had some expo-
sure to matrices as well, although what we shall need is given in Sections 1.3 and 1.5.

We also assume that students are familiar with functions of elementary calculus,
such as sin x, cos x, e*, and log x (we write log x for the natural logarithm, which
is sometimes denoted In x or log, x). Students are expected to know, or to review
as the course proceeds, the basic rules of differentiation and integration for functions
of one variable, such as the chain rule, the quotient rule, integration by parts, and
so forth.

We shall now summarize the notations to be used later, often without explicit
mention. Students can read through these quickly now, then refer to them later if
the need arises.

The collection of all real numbers is denoted R. Thus R includes the integers, . . .,
-3, -2, —1,0,1, 2, 3,...; the rational numbers, p/q, where p and q are integers
(g # 0); and the irrational numbers, such as \/5 n, and e. Members of R may be
visualized as points on the real-number line, as shown in Figure 0.1.

When we write a € R we mean that a is a member of the set R; in other words,
that a is a real number. Given two real numbers a and b with a < b (that is, with
a less than b), we can form the closed interval [a, b], consisting of all x such that
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Figure 0.1 The geometric representation of points on the real number line.

a < x < b, and the open interval (a, b), consisting of all x such that a < x <b.
Similarly, we may form half-open intervals (a, b] and [a, b) (Figure 0.2).

a b ¢ d e f
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closed open half open

Figure 0.2 The geometric representation of the intervals [a, b], (c, d), and [e, f).

The absolute value of a number a € R is written |a| and is defined as

la| = a if a>0
= —a if a<O.

For example, |3| =3, |-3|=3, [0| =0, and |—6| = 6. The inequality |a + b| <
|a| + |b| always holds. The distance from a to b is given by |a — b|. Thus, the distance
from 6 to 10 is 4 and from —6 to 3 is 9.

If we write 4 = R, we mean A is a subset of R. For example, 4 could equal the
set of integers {..., —3, —2, —1,0, 1,2, 3,...}. Another example of a subset of R
is the set Q of rational numbers. Generally, for two collections of objects (that is,
sets) A and B, A = B means A is a subset of B; that is, every member of A4 is also
a member of B.

The symbol A U B means the union of A and B, the collection whose members
are members of either 4 or B. Thus

(o0 =3, =2, 1,0} U{-1,0,1,2,...} ={..., =3, -2, —1,0,1,2,...}.

Similarly, A n B means the intersection of A and B; that is, this set consists of those
members of A and B that are in both A and B. Thus the intersection of the two
sets above is { —1, 0}.

We shall write A\B for those members of A that are not in B. Thus

{..,=3,-2,—1,00N\{—1,0,1,2,...} = {..., =3, =2}
We can also specify sets as in the following examples:

{aeR|aisaninteger} ={..., -3, -2, -1,0,1,2,...}
{aeR|aisaneven integer} = {..., —2,0,2,4,...}

{xeR|a<x<b}=[ab]
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A function f: A — B is a rule that assigns to each a € A one specific member f(a)
of B. The fact that the function f sends a to f(a) is denoted symbolically by a — f(a).
For example, f(x) = x3/(1 — x) assigns the number x3/(l —x) toeach x # 1 in R.
We can specify a function f by giving the rule for f(x). Thus, the above function f

can be defined by the rule x — x3/(1 — x).

If AcR, f: A =R — R means that f assigns a value in R, f(x), to each x € A.
The set A is called the domain of f, and we say f has range R, since that is where the
values of f are taken. The graph of f consists of all the points (x, f(x)) in the plane
(Figure 0.3). Generally, a mapping (=function = transformation = map) f: A — B,
where A and B are sets, is a rule that assigns to each x € A a specific point f(x) € B.

.

(x, f(x)

A = domain

graph of f

Figure 0.3 The graph of a function with the half-open interval 4 as domain.

The notation ) }_; a; means a; + - - - + a,, where ay, . .

The sum of the first n integers is

7 n(n + 1)

1+24+n=Y i=
i=1 2

The derivative of a function f(x) is denoted f'(x) or
ar
dx’

and the definite integral is written

{7 1) d.

., a, are given numbers.
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If we set y = f(x), the derivative is also denoted by

dy
dx’

Readers are assumed to be familiar with the chain rule, integration by parts, and
other rules that govern the calculus of functions of one variable. In particular, they
should know how to differentiate and integrate exponential, logarithmic, and trigo-
nometric functions. Short tables of derivatives and integrals, which are adequate
for the needs of this text, are printed at the front and back of the book.

The following notations are used synonymously: e* = exp x, In x = log x, and
sin” ! x = arcsin x.

The end of a proof is denoted by the symbol M, while the end of an example or
remark is denoted by the symbol A. Optional material, more theoretical or harder
exercises are preceded by a star: *.
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PREFACE

We will be maintaining an up-to-date list of corrections and suggestions con-
cerning this third edition. We will be happy to mail this list to any user of the text.
Please send your request to either Jerrold Marsden at the Department of Mathe-
matics, Cornell University, Ithaca, NY 14853-7901 or Anthony Tromba at the
Department of Mathematics, University of California, Santa Cruz, CA 95064.

Jerrold E. Marsden

Anthony J. Tromba
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THE GEOMETRY OF
EUCLIDEAN SPACE

Quaternions came from Hamilton . . . and have been an unmixed
evil to those who have touched them in any way. Vector is a
useless survival . . . and has never been of the slightest use to
any creature.

Lord Kelvin

In this chapter we consider the basic operations on vectors in three-dimensional
space: vector addition, scalar multiplication, and the dot and cross products. In
Section 1.5 we generalize some of these notions to n-space and review properties
of matrices that will be needed in Chapters 2 and 3.

VECTORS IN THREE-DIMENSIONAL SPACE

Points P in the plane are represented by ordered pairs of real numbers (a, b); the
numbers a and b are called the Cartesian coordinates of P. We draw two perpendic-
ular lines, label them x and y axes, and drop perpendiculars from P to these axes
as in Figure 1.1.1. After designating the intersection of the x and y axis as the origin
and choosing units on these axes, we produce two directed distances a and b as
shown in the figure; a is called the x component of P, and b is called the y component.

Points in space may be similarly represented as ordered triples of real numbers.
To construct such a representation, we choose three mutually perpendicular lines
that meet at a point in space. These lines are called the x axis, y axis, and z axis,
and the point at which they meet is called the origin (this is our reference point). We
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Figure 1.1.1 Cartesian coordinates in the plane.

choose a scale on these axes. The set of axes is often referred to as a coordinate sys-
tem, and it is drawn as shown in Figure 1.1.2.

Figure 1.1.2 Cartesian coordinates in space.

We may assign to each point P in space a unique (ordered) triple of real numbers
(a, b, ¢); and conversely, to each triple we may assign a unique point in space, just
as we did for points in the plane. Let the triple (0, 0, 0) correspond to the origin of
the coordinate system, and let the arrows on the axes indicate the positive direc-
tions. Then, for example, the triple (2, 4, 4) represents a point 2 units from the origin
in the positive direction along the x axis, 4 units in the positive direction along the
y axis, and 4 units in the positive direction along the z axis (Figure 1.1.3).

Because we can associate points in space with ordered triples in this way, we
often use the expression “the point (a, b, ¢)” instead of the longer phrase “the point
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Figure 1.1.3 Geometric representation of the point (2, 4, 4) in Cartesian coordinates.

P that corresponds to the triple (a, b, ¢).” If the triple (a, b, c) corresponds to P, we
say that a is the x coordinate (or first coordinate), b is the y coordinate (or second
coordinate), and c is the z coordinate (or third coordinate) of P. With this method
of representing points in mind, we see that the x axis consists of the points of the
form (a, 0, 0), where a is any real number; the y axis consists of the points (0, a, 0);
and the z axis consists of the points (0, 0, a). It is also common to denote points in
space with the letters x, y, and z in place of a, b, and c¢. Thus the triple (x, y, z)
represents a point whose first coordinate is x, second coordinate is y, and third
coordinate is z.

We employ the following notation for the line, the plane, and three-dimensional
space.

(i) The real line is denoted R! (thus, R and R! are identical).
(i) The set of all ordered pairs (x, y) of real numbers is denoted R2.
(iii) The set of all ordered triples (x, y, z) of real numbers is denoted R>.

When speaking of R, R?, and R? collectively, we write R", n = 1, 2, or 3; or R™,
m=1,2, 3.

The operation of addition can be extended from R to R? and R3. For R3, this
proceeds as follows. Given the two triples (x, y, z) and (X, y', z), we define their
sum by

)+ Y. =x+x,y+y,z+ 7).
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EXAMPLE 1 LLD)+@ —3,4=(3,-25)
(x, ¥, 2) 4+ (0,0,0) = (x, y, 2)
1,7,3) +(2,0,6)=3,7,9). A

The element (0, 0, 0) is called the zero element (or just zero) of R3. The element
(—x, —y, —z) is called the additive inverse (or negative) of (x, y, z), and we write
(x, y,2) — (x', ¥, 2') for (x, y, 2) + (—x/, =)', =2).

There are important product operations in R3. One of these, called the inner
product, assigns a real number to each pair of elements of R>. We shall discuss the
inner product in detail in Section 1.2. Another product operation for R? is called
scalar multiplication (the word “scalar” is a synonym for “real number”). This pro-
duct combines scalars (real numbers) and elements of R® (ordered triples) to yield
elements of R as follows: given a scalar « and a triple (x, y, z), we define the scalar
multiple or scalar product by

ax, y, z) = (ax, oy, oz).

EXAMPLE 2 2dye, 1) =(Q24,2-¢2-1)=(8,2e,2)
6(1,1,1) = (6, 6, 6)
1(x, y, 2) = (x, y, 2)
0(x, y, z) = (0,0, 0)
(@ + B)(x, y, 2) = (@ + B)x, (@ + B)y, (« + P)z)
= (ox + Bx, ay + By, oz + Bz)
=ax, y,2)+ Bx,y,2). A

It is a consequence of the definitions that addition and scalar multiplication for
R3 satisfy the following identities:

(i) (@p)(x, y, 2) = a[B(x, y, z)] (associativity)
(i) (o + P)x, y, 2) = ax, y, 2) + P(x, y, 2) )
(distributivity)
(i) of(x,y,2) + (¥, ), 2)] = ax, y, 2) + o(x', ', 2)
(iv) (0,0,0)=(0,0,0) (properties of zero
(V) O(X, ¥, Z) = (O, 0’ 0) Clements)

(property of the identity

(vi) 1(x,y,2)=(x,,2) element)

For R?, addition is defined just as in R3, by

XY+ Y)=x+x,y+)),



