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LINEAR ALGEBRA
with Linear Differential Equations



To my mother and father



PREFACE

This book is designed to serve as a text for a first course in linear
algebra. Such a course will normally be taken immediately after the first year
of calculus. However, it is quite feasible for an ambitious student to take it
concurrent with the second semester (or third quarter) of the calculus sequence.

In a one-quarter course it should be possible to include most of the
material in Chapters 1-4 as well as Sections 5.1 and 5.2 (and possibly 6.1 and
6.2). In a one-semester course there should be no difficulty in covering most
of the material in Chapters 1-6. In a two-quarter sequence there should be no
problem in finishing the whole book at a relaxed pace.

The content of this book is noteworthy in several respects. The treatment
of inner product spaces and spectral theory is unusually complete for a book
at this level. The finite dimensional versions of such classical topics as the
projection theorem, the Fredholm alternative, and the spectral theorem for
normal transformations are included. But perhaps the most distinctive
feature of the book is the inclusion throughout of examples involving function
spaces and linear differential operators. This serves a dual purpose: On the
one hand, it presents the theory of linear differential equations as an integrated
body of knowledge which illustrates the ideas and techniques of linear
algebra; on the other hand, it provides a certain insight into linear algebra
which cannot otherwise be achieved.

The material is organized so as to introduce as soon as possible the concepts
of a vector space and of a linear transformation. Thus the reader will have had
ample opportunity to become familiar with these new ideas by the time the
formal development of the theory of finite dimensional vector spaces is begun
in Chapter 3. This abstract approach is best suited to reveal the essential
unity and beauty of linear algebra. The difficulties that are sometimes encoun-
tered in this kind of development are overcome by four principal devices:
(a) suitably motivating each new development in the subject; (b) examining
all aspects and implications of both definitions and theorems in a special
category called Comment; (c) illustrating every new concept with copious
examples, each designed to combine a minimum of tedious computation with
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viii PREFACE

a maximum of insight; (d) providing ample exercises of all types and at just
the right level of difficulty.

This book is devoted primarily to the study of real vector spaces. The
results of Sections 1.4 and 1.5 on complex numbers and complex vector
spaces are required for only four sections: 5.6, 6.2, 6.3, and 7.4. In fact, all
that is really needed for Sections 6.2 and 7.4 is the fundamental theorem of
algebra, which is stated in Section 1.4.

The reader should have no difficulty with the numbering system that is
used. Within every chapter, definitions are double-numbered consecutively
beginning with the chapter number and one; the same is true for theorems,
lemmas, examples, and equations. Corollaries and comments also have double
numbers corresponding to the theorem, definition, etc., they pertain to, and
they are further designated as a, b, etc., when more than one occurs. The word
“equation” will usually be omitted from a reference; thus “by (5-6)” means
“by equation (5-6).”

My chief acknowledgement is to Charles Wright of the University of
Oregon, who presented me with about 30 pages of detailed suggestions. Others
who were kind enough to offer various kinds of assistance were John Jacobs,
Richard M. Koch, and Kenneth Ross of the University of Oregon, Nelo
Allan, Ronald Gatterdam, Alan Wallace, and Kenneth Weston of the Uni-
versity of Wisconsin—Parkside, Harry Hochstadt of the Polytechnic Institute
of Brooklyn, Paul Sally of the University of Chicago, Lawrence Kugler of the
University of Michigan, Flint College, and Victor Katz of the Federal City
College. Special thanks are due to Deborah Keller for an outstanding job
in typing the manuscript. I also wish to thank my two editors, Frederick Corey
and Gary Ostedt, as well as the whole crew at John Wiley & Sons, for their
cooperation throughout. Finally, I owe much to my family for their interest
and patience.

Kenosha, Wisconsin Franklin Lowenthal
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)
VECTOR SPACES

THE ENGLISH LANGUAGE

In this book, many new ideas and concepts will be introduced and
studied ; many theorems will be formulated and proved. To understand what
is said here it is essential to understand the meaning of certain key words.
These are words that the reader has known and used all his life. However,
they are used in a very precise sense in mathematics, a sense that differs some-
what from their colloquial usage.

The words each, every, and all are used synonymously by the mathe-
matician. Thus the three statements ‘“ Each man is mortal,” “Every man is
mortal,” and “All men are mortal” have exactly the same meaning. In
contrast, the word some has an entirely different meaning. The statement
“Some women are sexy” asserts that there exists at least one woman who is
sexy; the statement gives no information as to whether all, many, or even two
women are sexy. The distinction between the two types of statements above is
clarified by examining what would be involved in disproving them. To dis-
prove “All men are mortal” it suffices to find just one immortal man while to
disprove “Some women are sexy” it is necessary to show that every woman is
not sexy.

The statement “4 and B are true” means that both are true; to establish
it we would have to show that A4 is true and that B is true. In contrast, the
. statement “4 or B is true” means that at least one of the two is true—
possibly both are true, but no information is given on this point. An often
convenient way of establishing the assertion “A or B is true” is to show that
if A were false, then B is true (or that if B were false, then A4 is true) and
consequently at least one of the two is definitely true. This crucial distinction
between the words and and or can also be seen by considering the negations
of the two kinds of statements above. Remember that to disprove a proposition
or a theorem, exhibiting just one instance where it is false is sufficient—
whether it is always false may be interesting but is irrelevant. Thus, to disprove
“A and B are true,” it suffices to show that either 4 or B is false, while to
disprove “A or Bis true,” it is necessary to show that both 4 and B are false.
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2  VECTOR SPACES

In this book there will be an abundance of both theorems and definitions;
we should like to briefly examine their salient features. A theorem has the
form “A implies B> or “if A, then B”’; its converse is *“ B implies 4™ or
““if B, then A.” The reader, hopefully, realizes that these two statements are
quite different; in fact, one could be true and the other false (see Exercise 1).
If both are true, we say that A is true just in case B is true or 4 and B are
equivalent or “4 if and only if B.” This single statement consists, in fact, of
two assertions; “A implies B and ““ B implies 4.” Now a definition by its
very nature asserts that a new concept is equivalent to certain known old
concepts. Hence, in a definition, the word if means “if and only if.” For
example, the definition ““A triangle is isosceles if two sides are equal’ really
means “A triangle is isosceles if and only if two sides are equal.” We could
reformulate this definition to eliminate the word if (and hence this ambiguity)
as follows: “An isosceles triangle is a triangle with two equal sides.”

To assert that “if A4, then B” is the same as asserting that “4 holds only
if B holds,” i.e., “if not B, then not 4.” In other words, the two assertions
“A implies B and “not B implies not 4™ are equivalent. The latter is called
the contrapositive. We shall sometimes find it simpler to prove the contra-
positive. For example, the reader may recall that in plane geometry, instead
of proving “If the alternate interior angles are equal, then the lines are
parallel,” one proves the contrapositive “If the lines are not parallel, then the
alternate interior angles are not equal.”

The word set will be undefined; synonyms, equally undefined, are collec-
tion, class, and system. A subset of a set is a collection of objects each of
which belongs to the original set. Every set is a subset of itself; the term
proper subset is used to designate a subset of a set that is not equal to the
whole set. The fact that the empty set is a subset of every set is of importance
elsewhere in mathematics; the reader of this book need have no nightmares
about empty sets.

EXERCISE

1. Give an example from (a) geometry, (b) algebra, and (c) calculus of a
theorem whose converse is false.

‘

1.1 THE VECTOR SPACE R

The reader may already have some idea of what a vector is; probably, he
pictures a vector as an arrow. In this book we will call many other things
vectors. Therefore, the reader is urged at the very outset to abandon the idea
that a vector is an arrow; at the same time, he should never forget that an
arrow is an example of a vector.



1.1 THE VECTOR SPACER* 3

In this section we shall study vectors in n-dimensional space. The reader is
cautioned that these, too, are just examples of vectors; the definition of the
concept of a vector is postponed until the next section.

DEFINITION 1.1. A vector in real n space is an n-tuple of real numbers
v = (x17 x29 siwey xn) (1-1)

Two vectors v = (X1, X, ..., X,) and w = (y1, y2, ..., ¥,) in n space are
said to be equal if they look identical, i.e., if x; = y; foralli,i = 1,2,..., n.

Notation. Throughout this book we shall use the letters u, v, and w to
denote vectors. Lowercase letters at the beginning of the Latin (a, b, ¢, ...)
and Greek (e, 8,7, ...) alphabets as well as the letters s, ¢, x, and y will
denote real numbers (also called scalars). The letters i, j, k, I, m, n, p, q, and r
will denote integers. There will be, unfortunately, one flagrant violation of
these rules: The notation i, i, . . ., I, will be used for certain special vectors
in n space.

Example 1.1. The vectors (0, 1), (1, 0), and (1, 1) are three different vectors
in 2 space.

Comment 1.1a. The reader should carefully distinguish between the vector,
which is the whole n-tuple, and the real numbers that appear as entries in the
n-tuple. These entries are called the components of the vector.

Example 1.2. The vector (5, =, —2, +4/2) in 4 space has the real number 5
as its first component, the real number = as its second component, the real
number —3 as its third component, and the real number +4/2 as its fourth
component.

The special n-tuple all of whose components are zero is called the zero
vector and is denoted by 0. Thus the symbol 0 is ambiguous since it represents
both the real number zero and the zero vector; however, the author guaran-
tees that the context will always clarify the sense in which the symbol O is
used.

Comment 1.1b. The vector v = (x;, X5, X3) in 3 space may be identified with
the arrow starting at the origin and terminating at the point whose first,
second, and third coordinates are just x;, X, and x;, respectively. The arrow
that represents the zero vector degenerates to a point. Similar identifications
can, of course, be made for vectors in 1 and 2 space.

Now the reader must suspect (if for no reason other than that the book has
" just begun) that there is more to the study of vectors in # space than just
writing down n-tuples. In fact, mathematicians have no interest in objects
per se; rather, they wish to study operations that can be performed on these
objects.



4  VECTOR SPACES

DEFINITION 1.2. Let v = (X1, Xg,...,X,) and w = (y1, ¥a, ..., ¥n) be
vectors in real n space. The sum of the vectors v and w, denoted by v + w,

is the n-tuple
v+ w= (X + Y1, X2 + Vo, .. .s Xn + Vn) (1-2)

Comment 1.2a. This operation is called vector addition; note that the result
of this operation, i.e., the sum v + w, is again a vector in n space. Observe
also that vector addition is defined only for vectors in (the same) n space, e.g.,
(3, 1) + (5,0, —1) makes no sense.

Example 1.3
(1’ _23 _%s 0) F (3: 7s %3 77) = (4a 59 19‘”)

Comment 1.2b. To find the ith component of v + w we merely add the ith
component of v and the ith component of w. Hence in 2 or 3 space, if a vector
is identified with an arrow, the vector » + w may be found geometrically as
follows: Rigidly translate the arrow that represents w until it starts at the
terminal point of v; then the arrow that starts at the origin and terminates
at the terminal point of this translate of w represents the vector v + w (see
Fig. 1.1). The rule just described is often referred to as the parallelogram law
since v + w is represented by a diagonal of the parallelogram determined
by v and w.

The next operation differs from vector addition in that it combines not
two vectors but rather a real number and a vector. Note, however, that as in
vector addition the result of the operation is again a vector.

DEFINITION 1.3. Letv = (x, x5, ..., X,;) be a vector in real n space and
let « be a real number. The product of the scalar « and the vector », denoted
by av, is the n-tuple.

av = (0eXq, aXg, . . ., AXy) (1-3)

Comment 1.3a. This operation is called multiplication of a vector by a scalar;
note that the result of this operation, i.e., av, is again a vector in n space.

v+ uw w translate

Origin
Figure 1.1
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av
Origin

ov
Origin
a>0 a<0

Figure 1.2

Example 1.4
7T(3’ —m, 05 2/779 0) = (377" _7725 09 29 0)

Comment 1.3b. To find the ith component of «v we merely take the product
of « and the ith component of ». Hence in 2 or 3 space, if a vector is identified
with an arrow, the vectors v and «» must lie on the same straight line through
the origin. These arrows point in the same direction if « > 0 and in opposite
directions if « < 0 (see Fig. 1.2). Note that if « = 0, then «v is the zero vector.

Notation. The symbol R" is used to denote the set of all vectors in real n
space fogether with the two operations of vector addition and multiplication
‘of a vector by a scalar. (Strictly speaking, R" is not the set of all a-tuples but
that set together with the two operations defined above; this distinction can
be safely ignored by the reader.)

A brief comment on R is in order. It consists of I-tuples; these can in a
natural way be identified with the real numbers themselves: Identify the 1-
tuple (x) with the real number x. Moreover, addition of 1-tuple looks just
like addition of real numbers and multiplication of 1-tuples by scalars looks
just like multiplication of real numbers. Thus there is no actual distinction
between real numbers and vectors in R'; nevertheless, such a distinction,
artificial as it may seem, will be adhered to in this book. The I-tuple (x) will
be called a vector; the real number x will be called a scalar.

The operations of vector addition and multiplication of a vector by a
scalar have many properties. Some of these are listed below. Note that —v
denotes the vector all of whose components are the negative of the corre-
sponding components of the vector v, i.e., — v = (—1)w.

Properties of Vector Addition

@ v+w=w+uv commutative law
b)) v+w+uw=@W+w +u associative law
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) v+0=02 zero vector is the identity
d v+ -0v=0 —uv is the inverse of v

Properties of Multiplication of a Vector by a Scalar

) Iv=v

()  o(Bv) = Blav) = (B0

(g olv +w) =ca + aw distributive law
(h) (e + Bv=av + Bv distributive law

To prove (a), note that if v = (xy, X3, ..., X,) and w = (¥4, V2, .. -, Vn)s
then
v+ w= (X3 + Y1, X2+ Yoy 0s Xn + V)

while
w+ o=y + X1, Vs + Xo,..., Yn + X,).

Since addition of real numbers is commutative, we have that x; + y;, =
Vi + x; for all i, i=1,2,...,n. Hence v + w = w + v. The proofs of
(b-h) are equally simple and are left to the reader (see Exercise 2).

There are other properties that could have been included in our list, e.g.,
Ov = 0 and o0 = «. The reader may justifiably inquire why the eight pro-
perties above were singled out for special attention; in fact, he might even
question the usefulness of describing properties as obvious as those above.
The answer to the first question is that it turns out that from the eight
properties listed above all other properties of vector addition and multipli-
cation of a vector by a scalar can be derived without recourse to the explicit
definitions of these operations. The second question is harder to answer.
The point is that mathematicians would like to develop for sets bearing no
apparent likeness to R" a structure that resembles as much as possible that
of R™ In turns out that the key to accomplishing this is the ability to find a
pair of operations that satisfy the eight properties listed above. Such a system
will be called a vector space and an element in it will be called a vector; R*
will be only one—albeit a very important one—example of a vector space. The
detailed development of this subject is postponed until the next section.

DEFINITION 14. Let vy, v,,..., v, be k vectors in R*. A linear combin-
ation of these vectors is any vector of the form

K
o0y + eglp + 00+ ol = Z o0; (1-4)

i=1
where o, a,, . . ., o are any k scalars.
Comment 1.4a. A linear combination of one vector v, is just any scalar

multiple of v, ; a linear combination of two vectors vy, v, is any vector of the
form o0, + agvs.
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Comment 1.4b. Observe that the zero vector is always a linear combination
of any k vectors: Choose all the scalars equal to 0.

Example 1.5. Every vector in R® can be written as a linear combination of
the three vectors (1,0, 0), (0, 1,0), and (0, 0, 1). For if v = (x;, X2, X3) is
any vector in R®, we have

v = xl(l’ 05 0) + x2(0a 13 0) + xB(O, 0’ 1) (1'5)

This result is perhaps known to the reader, except that he is probably familiar
with the vectors (1, 0, 0), (0, 1, 0), and (0, O, 1) under the aliases of 7, j, and k,
respectively.

To generalize the result of Example 1.5 to R", consider the n vectors i, =
1,0,...,0,i,=(,1,...,0),...,i, =(0,0,..., 1); the kth component of
i, is 1 and all other components are zero. Then any vector v = (xy, X5, . . .,
Xx,) in R" is a linear combination of the »n vectors iy, i, . . ., i, since

n
v = xlil + X2i2 +---+ xnin = Z xkik (]'6)
k=1

It is left to the reader to show that the scalars in the expansion (1-6) are
uniquely determined by v and hence every vector in R™ can be written in
exactly one way as a linear combination of the n vectors iy, i, .. ., i, (see
Exercise 5). For the present, we shall call the set of n vectors {iy, iy, ..., i,}
a basic set for R™.

The reader may have detected a notational abuse above. Note that i, in
R is the 1-tuple (1), i, in R?is the 2-tuple (1, 0), 7, in R® is the 3-tuple (1, 0, 0),
etc.; all of these different vectors are denoted by the same symbol i,. For-
tunately, the context will always make clear which #; is meant.

EXERCISES

2. Verify properties (b-h).
3. Verify that (a) Ov = 0; (b) «0 = 0; (¢) (—1)v = —v; (d) av = 0 implies
that e = 0 orv = 0.
4. Let v and w be vectors in R™ and assume that both »; and u, are linear
combinations of v and w, i.e., u; = av + Bw, uy = yv + dw. Show that
(a) u; + u, is a linear combination of v and w
(b) 3u, is a linear combination of v and w
(¢) any linear combination of u;, and u, is itself a linear combination of
vand w
(d) Is v necessarily a linear combination of u, and u,? If your answer is
yes, prove it; if no, give a counterexample.



