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Preface

The principal aim of this volume is to place at the disposal of the engineer
or physicist the basis of an intelligent working knowledge of a number of
facts and techniques relevant to some fields of mathematics which often are
not treated in courses of the “Advanced Calculus’ type, but which are
useful in varied fields of application.

Many students in the fields of application have neither the time nor the
inclination for the study of detailed treatments of each of these topics from
the classical point of view. However, efficient use of facts or techniques
depends strongly upon a substantial understanding of the basic underlying
principles. For this reason, care has been taken throughout the text either
to provide a rigorous proof, when the proof is believed to contribute to an
understanding of the desired result, or to state the result as precisely as
possible and indicate why it might have been formally anticipated.

In each chapter, the treatment consists of showing how typical problems
may arise, of establishing those parts of the relevant theory which are of
principal practical significance, and of developing techniques for analytical
and numerical analysis and problem solving.

Whereas experience gained from a course on the Advanced Calculus
level is presumed, the treatments are largely self-contained, so that the
nature of this preliminary course is not of great importance.

In order to increase the usefulness of the volume as a basic or supple-
mentary text, and as a reference volume, an attempt has been made to
organize the material so that there is little essential interdependence among
the chapters, and considerable flexibility exists with regard to the omission
of topics within chapters. In addition, a substantial amount of supplementary
material is included in annotated problems which complement numerous
exercises, of varying difficulty, arranged in correspondence with successive
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vi PREFACE

sections of the text at the end of the chapters. Answers to all problems are
either incorporated into their statement or listed at the end of the book.

The first chapter deals principally with linear algebraic equations, quad-
ratic and Hermitian forms, and operations with vectors and matrices, with
special emphasis on the concept of characteristic values. A brief summary
of corresponding results in function space is included for comparison, and
for convenient reference. Whereas a considerable amount of material is
presented, particular care was taken here to arrange the demonstrations in
such a way that maximum flexibility in selection of topics is present.

The first portion of the second chapter introduces the variational notation
and derives the Euler equations relevant to a large class of problems in the
calculus of variations. More than usual emphasis is placed on the significance
of mnatural boundary conditions. Generalized coordinates, Hamilton’s
principle, and Lagrange’s equations are treated and illustrated within the
framework of this theory. The chapter concludes with a discussion of
the formulation of minimal principles of more general type, and with the
application of direct and semidirect methods of the calculus of variations
to the exact and approximate solution of practical problems.

The concluding chapter deals with the formulation and theory of linear
integral equations, and with exact and approximate methods for obtaining
their solutions, particular emphasis being placed on the several equivalent
interpretations of the relevant Green’s function. Considerable supplementary
material is provided here in annotated problems.

The present text is a revision of corresponding chapters of the first
edition, published in 1952. It incorporates a number of changes in method
of presentation and in notation, as well as some new material and additional
problems and exercises. A revised and expanded version of the earlier
material on difference equations and on finite difference methods is to
appear separately.

Many compromises between mathematical elegance and practical sig-
nificance were found to be necessary. However, it is hoped that the text
will serve to ease the way of the engineer or physicist into the more advanced
areas of applicable mathematics, for which his need continues to increase,
without obscuring from him the existence of certain difficulties, sometimes
implied by the phrase “It can be shown,” and without failing to warn him
of certain dangers involved in formal application of techniques beyond the
limits inside which their validity has been well established.

The author is indebted to colleagues and students in various fields for
help in selecting and revising the content and presentation, and particularly
to Professor Albert A. Bennett for many valuable criticisms and suggestions.

FraNcis B. HILDEBRAND
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CHAPTER ONE

Matrices and

Linear Equations

1.1. Introduction. In many fields of analysis we find it necessary to deal
with an ordered set of elements, which may be numbers or functions. In
particular, we may deal with an ordinary sequence of the form

ay, dg, " * ", dy

or with a two-dimensional array such as the rectangular arrangement

a1, G, T,y
sy, Aag, > Qap
amla amZ’ > amn’

consisting of m rows and # columns.

When suitable laws of equality, addition and subtraction, and multiplica-
tion are associated with sets of such rectangular arrays, the arrays are called
matrices, and are then designated by a special symbolism. The laws of
combination are specified in such a way that the matrices so defined are of
frequent usefulness in both practical and theoretical considerations.

Since matrices are perhaps most intimately associated with sets of linear
algebraic equations, it is desirable to investigate the general nature of the
solutions of such sets of equations by elementary methods, and hence to
provide a basis for certain definitions and investigations which follow.

1.2. Linear equations. The Gauss-Jordan reduction. We deal first with
the problem of attempting to obtain solutions of a set of m linear equations

1



2 MATRICES AND LINEAR EQUATIONS §1.2

in n unknown variables x;, X,, * * *, X,,, of the form
apXxy + ayeXs 4 0t A AX, = 6,
a21x1 + a22x2 + tr + AopXp = 02’ (1)
’
A1 Xy + ApoXo - e AnXn = Cm

by direct calculation.

Under the assumption that (1) does indeed possess a solution, the Gauss-
Jordan reduction proceeds as follows:

First Step. Suppose that a;; # 0. (Otherwise, renumber the equations
or variables so that this is so.) Divide both sides of the first equation by ay;,
so that the resultant equivalent equation is of the form

Xy + ageXs + -0 4 a1.%, = €. 2

Multiply both sides of (2) successively by @y, a3y, " -, @y, and subtract
the respective resultant equations from the second, third, - - -, mth equations
of (1), to reduce (1) to the form

X1+ apXe + 000+ a1aX, =
aé2x2 + = + a;nxn = C;: (3)
a;nzxz + fEm + a"mnxn = c;n

Second Step. Suppose that ay, 7% 0. (Otherwise, renumber the equations
or variables so that this is so.) Divide both sides of the second equation in
(3) by ay,, so that this equation takes the form

Xo + al2/3x3 + nEE + alzlnx'n = Cg’ (4)

and use this equation, as in the first step, to eliminate the coefficient of x,
in all other equations in (3), so that the set of equations becomes

Xy afsXs + 00+ agx, =,

Xy + agXs + 0+ agXx, = ¢,
33Xy v Qgp¥n =65, [ - (5)

a;Irzax.’i + e + a;,nnxn = c;,n

Remaining Steps. Continue the above process r times until it terminates,
that is, until r = m or until the coefficients of all x’s are zero in all equations
following the rth equation. We shall speak of these m — r equations as the
residual equations, when m > r.
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There then exist two alternatives. First, it may happen that, with m > r,
one or more of the residual equations has a nonzero right-hand member,
and hence is of the form 0 = ¢, (where in fact ¢,(” = 0). In this case, the
assumption that a solution of (1) exists leads to a contradiction, and hence
no solution exists. The set (1) is then said to be inconsistent or incompatible.

Otherwise, no contradiction exists, and the set (1) of m equations is
reduced to a set of r equations which, after a transposition, can be written
in the form

X1="N I 11Xy + et %1, n—r¥ns

x2 = Y2 + 0(21Xr+1 + e + az,n—rxm (6)

where the ’s and «’s are specific constants related to the coefficients in (1).
Since each of the steps in the reduction of the set (1) to the set (6) is reversible,
it follows that the two sets are equivalent, in the sense that each set implies
the other. Hence, in this case the most general solution of (1) expresses each
of the r variables x;, x,, * * -, X, as a specific constant plus a specific linear
combination of the remaining n — r variables, each of which can be assigned
arbitrarily.

If r=n, a unique solution is obtained. Otherwise, we say that an
(n — r)-parameter family of solutions exists. The number n — r = d may
be called the defect of the system (1). We notice that if the system (1) is
consistent and r is less than m, then m — r of the equations (namely, those
which correspond to the residual equations) are actually ignorable, and hence
must be implied by the remaining r equations.

The reduction may be illustrated by considering the four simultaneous
equations

X+ 2%y — X3 — 2x, = —1,
25+ Xy + X3— x4=4,
X1— X%+ 2%+ x=2-5,

x1 4 3xy — 2x3 — 3x, = —3

)

It is easily verified that after two steps in the reduction one obtains the
equivalent set

X + x5 =3,
Xg — Xg — X3 = —2,
0=0,
0=
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Hence the system is of defect two. If we write x; = C; and x, = G, it
follows that the general solution can be expressed in the form

Xx3=3—C, X=-"24C+GC, x3=0C;, x3=0y, (8a)

where C; and C, are arbitrary constants. This two-parameter family of
solutions can also be written in the symbolic form

(X1 Xg X3, X4} = {3, —2,0,0} + Ci{—1,1,1,0} + Cof0, 1,0, 1}. (8b)

It follows also that the third and fourth equations of (7) must be con-
sequences of the first two equations. Indeed, the third equation is obtained
by subtracting the first from the second, and the fourth by subtracting one-
third of the second from five-thirds of the first.

The Gauss-Jordan reduction is useful in actually obtaining numerical
solutions of sets of linear equations,* and it has been presented here also
for the purpose of motivating certain definitions and terminologies which
follow.

1.3. Matrices. The set of equations (1) can be visualized as representing
a linear transformation in which the set of n numbers {xl, Ky 2y xn} is
transformed into the set of m numbers {cl, (LI cm}.

The rectangular array of the coefficients a,; specifies the transformation.
Such an array is often enclosed in square brackets and denoted by a single
boldface capital letter,

apn Gy Ain
A= [a;]= an Gz "7 Gy || )
aml am2 amn

and is called an m X n matrix when certain laws of combination, yet to be
specified, are laid down. In the symbol a,;, representing a typical element,
the first subscript (here i) denotes the row and the second subscript (here j)
the column occupied by the element.

* In place of eliminating x; from all equations except the kth, in the kth step, one may
eliminate x; only in those equations following the kth equation. When the process termi-
nates, after r steps, the rth unknown is given explicitly by the rth equation. The (» — I)th
unknown is then determined by substitution in the ( — 1)th equation, and the solution is
completed by working back in this way to the first equation. The method just outlined is
associated with the name of Gauss. In order that the “round-off”” errors be as small as
possible, it is usually desirable that the sequence of eliminations be ordered such that the
coefficient of x; in the equation used to eliminate x; is as large as possible in absolute value,
relative to the remaining coefficients in that equation.

A modification of this method, due to Crout (Reference 3), which is particularly well
adapted to the use of desk computing machines, is described in an appendix.
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The sets of quantities x,(i=1,2,+++,n) and ¢;(i=1,2,--, m) are
conventionally represented as matrices of one column each. In order to
emphasize the fact that a matrix consists of only one column, it is sometimes
convenient to denote it by a lower-case boldface letter and to enclose it in
braces, rather than brackets, and so to write

X, re )
Xg Ca

X = {xi} =< "}, c= {ci} =< " > (10a,b)
L X% ) LCm )

For convenience in writing, the elements of a one-column matrix are frequently
arranged horizontally,
X = {xh x2, = 5 xn}’

the use of braces then being necessary to indicate the transposition.

Other symbols, such as parentheses or double vertical lines, are also
used to enclose matrix arrays.

If we interpret (1) as stating that the matrix A transforms the one-column
matrix x into the one-column matrix ¢, it is natural to write the transforma-
tion in the form

Ax =c, (11)

where A = [g,,], x = {x,}, and ¢ = {¢,;}.
On the other hand, the set of equations (1) can be written in the form

2 auXy = ¢ i=12--,m), (12a)

k=1

which leads to the matrix equation

{é:laikxk} = {e;}. (12b)

Hence, if (11) and (12b) are to be equivalent, we are led to the definition

A x = [a;]{x;} = {é}aikxk}. (13)

Formally, we merely replace the co/umn subscript in the general term of the
first factor by a dummy index k, replace the row subscript in the general
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term of the second factor by the same dummy index, and sum over that
index.*

The definition clearly is applicable only when the number of columns in
the first factor is equal to the number of rows (elements) in the second factor.
Unless this condition is satisfied, the product is undefined.

We notice that a;, is the element in the ith row and kth column of A,
and that x, is the kth element in the one-column matrix x. Since i ranges
from 1 to m in a;;, the definition (13) states that the product of an m X n
matrix into an #n X 1 matrix is an m X 1 matrix (7 elements in one column).
The ith element in the product is obtained from the ith row of the first
factor and the single column of the second factor, by multiplying together
the first elements, second elements, and so forth, and adding these products
together algebraically.

Thus, for example, the definition leads to the result

l 141402 1
2 1[2}: 2:14+1-2)=(4
—1 2 —] 1252 3
Now suppose that the n variables x;, -+, x, are expressed as linear

combinations of s new variables y,, - - -, y,, that is, that a set of relations
holds of the form

Mm

X, =

bikyk (l = 1’ 23 T, n)’ (14)

k=1

If the original variables satisfy (12a), the equations satisfied by the new
variables are obtained by introducing (14) into (12a). In addition to replacing
i by k in (14), for this introduction, we must replace k£ in (14) by a new

* Very frequently, in the literature, use is made of the so-called summation convention,
in which the sigma symbol is omitted in a sum such as

n
z Qix Xy
k=1

with the understanding that the notation a,.x; then is to indicate the result of summing the
product with respect to the repeated index, over the range of that index. Similarly, with this
convention one would write a,;b,,c;; when summations with respect to both k and / are
intended. An explicit statement then must be made when the element a,; is to be distin-
guished from the sum

n
z (4
k=1

or in other cases when the summation convention temporarily is to be abandoned. The
summation convention will not be used in this text.
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dummy index, say /, to avoid ambiguity of notation. The result of the
substitution then takes the form

Zaik(Z bklyl) =6 (i =1,2,~~~,m), (15a)
=1 \i=1

or, since the order in which the finite sums are formed is immaterial,

E (zaikbkl)yl =& (i=12---,m). (15b)
=1 \k=1
In matrix notation, the transformation (14) takes the form
x =By (16)
and, corresponding to (15a), the introduction of (16) into (11) gives
ABy) =c. a7
But if we write
- i:1,2,'--,m)
Pij _kglaikbki (j=1,2,"-,s , (18)

equation (15b) takes the form

zpilJ’z=?i (i=12-:-,m),
=1

and hence, in accordance with (12a) and (13), the matrix form of the
transformation (15b) is

Py=c, (19)
where P = [p,;].

Thus it follows that the result of operating on y by B, and on the product
by A [given by the left-hand member of (17)], is the same as the result of
operating on y directly by the matrix P. We accordingly define this matrix
to be the product A B,

AB = lagllby) = | $auby]. (20)
The desirable relation -
A(By) = (AB)y

then is a consequence of this definition.

Recalling that the first subscript in each case is the row index and the
second the column index, we see that if the first factor of (20) has m rows
and n columns, and the second n rows and s columns, the index i in the
right-hand member may vary from 1 to m while the index j in that member
may vary from 1 to s. Hence, the product of an m X n matrix into an n X s
matrix is an m X s matrix. The element p;; in the ith row and jth column of
the product is formed by multiplying together corresponding elements of
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the ith row of the first factor and the jth column of the second factor, and
adding the results algebraically. In particular, the definition (20) properly
reduces to (13) when s = 1.

Thus, for example, we have

1 2 1
1 0 1

1 01
1 —2 1

210

1-14+0-141-2)1-24+0-0+1-1)(1-14+0-1+41-0)
Clar1—2-141-2)(1-2—2-04+1-1)1-1—2-1+1-0)

303 1
o3~

We notice that A B is defined only if the number of columns in A is equal
to the number of rows in B. In this case, the two matrices are said to be
conformable in the order stated.

If A is an m X n matrix and B an » X m matrix, then A and B are con-
formable in either order, the product A B then being a square matrix of order
m and the product B A a square matrix of order n. Even in the case when A
and B are square matrices of the same order the products A B and B A are
not generally equal. For example, in the case of two square matrices of order
two we have

|:a11 alz} [bu b12:| - \:anbn + ay9bg1 Gy + a12b22]

Ay Qg || by Doy A b1y + Agoby;  Azybys + by

and also

|:b11 bys |:a11 012} - |:a11b11 + anbiy  apby; + a?zbm}

by by il s Gy Ay1bo; + Apbas  Ayobyy + Aoboy

Thus, in multiplying B by A in such cases, we must carefully distinguish
premultiplication (A B) from postmultiplication (B A).

Two m X n matrices are said to be equal if and only if corresponding
elements in the two matrices are equal.

The sum of two m X n matrices [a;;] and [b,] is defined to be the matrix
[a;; + b;;]. Further, the product of a number k and a matrix [a,;] is defined
to be the matrix [ka,], in which each element of the original matrix is
multiplied by k.

From the preceding definitions, it is easily shown that, if A, B, and C
are each m X n matrices, addition is commutative and associative:

A+B=B+A A+B+C=A+B)+C @n



