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Preface

Mathematical ecology as a biological science accumulates information
concerning the evolution of biological communities. On the other hand,
as a mathematical science it gains a systematic character. In com-
parison with other mathematical specializations it utilizes methods of
different parts of mathematics.

The main aim of the authors was to write an introductory book
concerning the mathematical theory of biological community models.
This book is not intended to be encyclopaedic in character, but never-
theless describes the main developments of mathematical ecology in
parallel with the mathematical ideas which were stimulated by ecologi-
cal modelling.

Unfortunately, S. Sujan died in January 1985, but fortunately
left notes of individual chapters and sketches of some parts. I have
tried to respect his intentions concerning the contents and their
presentation.

The first three chapters — except for those parts dealing with sto-
chastic process — presuppose only an elementary knowledge of math-
ematical analysis and algebra: The fourth chapter, however, is a little
more pretentious.

I am very grateful to I. Bajla for providing me with the notes of
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S. Sujan. I also thank Professors J. Milota and J. Komornik and in
particular Professor P. Brunovsky for their constructive criticism and
helpful suggestions. I give a generous acknowledgement the editor of
the English version Professor Sleeman.

K. Smitalova



Introduction

A quarter of a century ago the term ecology was used only in
the specialist biological literature. Today ecological problems excite
the interest not only of specialists but also the general public, at
large.

‘Ecological problems’ are concerned with questions relating to the
protection and sustenance of life in the environment and the rational
exploitation of natural sources. The solution to these problems de-
mands a detailed investigation of the phenomena under study including
their intrinsic structure and relation to the environment. The develop-
ment of the theoretical elements of nature conservancy proceeds by the
integration of different disciplines, the most important of which is
ecology — a science concerning conditions of existence and the mutual
interactions of living organisms with the environment.

The complexity of ecological relations underlines the growing need
for wider penetration of mathematical methods into biology. Indeed,
the number of papers devoted to various mathematical models of
ecological phenomena continues to increase. It is therefore not surpris-
ing that mathematical ecology has arisen as a relatively independent
science.

Living organisms of single species do not live separately, but form
groups which are called populations. Several populations of different
species form a biological community. An ecological system — or eco-
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system for short — is the union of a biological community and the
environment in which it lives.

The term ‘ecology’ was first used by E. Haeckel in 1866 to denote
a science dealing with the conditions for existence of organisms and
their relation to the environment. However, attempts to use mathemati-
cal ideas to describe living objects appeared much earlier.

_In the Middle Ages the Italian mathematician Fibonacci considered the
problem of how many pairs of rabbits are born to one pair of rabbits
during a year. He supposed that a pair of offspring is born to any pair
during a month and that this process starts after the second month of
life. The number of rabbits after one, two and successive months then
forms a sequence of natural numbers in which every next member is
equal to the sum of two preceding members. This sequence is well-
known in mathematics as the Fibonacci sequence.

In this example rabbits served only to give a contrived biological
interpretation to an abstract mathematical idea. Later, however, at-
tempts were made to model realistic evolutionary processes from
theoretical considerations. For instance, in 1798 T. Malthus con-
structed a general model of the evolution of the number of individuals in
a single-species community in which he assumed the growth-rate to be
linearly dependent on the number of individuals. This assumption,
however, is only valid in the case where resources are unlimited and the
age structure of the population and the environment remain un-
changed. Such circumstances rarely occur except possibility under
laboratory conditions or in the first phase of evolution of the lower
organisms.

Population dynamic models describing a number of real evolution-
ary situations were constructed in the first half of the 19th century
including the well-known logistic or Pearl — Verhulst equation which
originated in the following way. Since real resources are limited, the
population density x(#) cannot be greater than some constant K and if
the population density increases, then the growth-rate decreases. In the
case that this process is linear, the population dynamics equation has

the form
dx ( x)
—=ax|1—=—
dr K

in which a stands for the relative growth-rate. This simple equation is
appropriate for modelling the evolution dynamics of a number of real
populations. Later, models of two-species biological communities with
interactions were also constructed.

During World War I fishing was limited and in the northern Adrian
region predatory types of fish became widespread. In order to under-
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stand this phenomenon the mathematician V. Volterra constructed an
analytical model describing a two-species predator —prey community.
This model consisted of a system of two non-linear differential equa-
tions exhibiting periodic solutions. When applied to the fish popula-
tions in the northern Adrian region the model suggests that the observed
growth of the density of the predator population could be caused by a
mechanism of reciprocal interactions of species rather than the lack of
fishing. This hypothesis was confirmed by a subsequent decrease in the
predator population without any external intervention.

The same system of differential equations was investigated by
A. Lotka in his book Elements of physical biology of 1924. Based on
models of chemical kinetics Lotka derived a system of differential
equations applicable to the dynamics of the densities of two interacting
populations.

V. Volterra may be considered to be the founder of the mathematical
theory of biological communities. In his book Legons sur la théorie
mathématique de la lutte pour la vie of 1931 Volterra’s mathematical
analysis of his models led to results with realistic interpretation. Indeed,
his models of biological communities became not only a means of
description, but also provided a means for predicting the behaviour of
the modelled system.

It is intuitively clear that a biological community which exists in a
constant state a long time has an intrinsic ability to resist disturbances
in its environment. Such communities are said to be stable. A stable
community should conserve the number of species. This is a natural
requirement, since a community represents an organized system of
populations. A stable community should also be resilient, in that it
should conserve its intrinsic relations under perturbations. Moreover,
it should be resistant to small changes of the environment.

Those intuitive requirements could be compared with the physical
notion of the equilibrium of thermodynamical systems. Changes of the
system are dependent on its interaction with the environment and
according to this interaction there are three possible groups: namely
isolated, closed and open systems. A system is isolated if it exchanges
neither matter nor energy with the environment. More generally, a
closed system is one which exchanges only the energy within the en-
vironment. A system which exchanges both energy and matter is called
an open system. Biological communities are usually open systems.

The equilibrium state of a system is the state the system achieves if
it is isolated from the environment. Open and closed systems do not
usually exhibit equilibrium, since they interact with the environment.

An important case of a non-equilibrium state is the so-called station-
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ary state. This state arises in the process of energy and matter exchange
in open systems. Hence in general, a stationary state is no equilibrium,
but every equilibrium state is stationary. Biological communities exist
predominantly in stationary states which correspond to an optimal
adaptation to the environment. After a deviation from the stationary
state, the community tends to return.

If a non-zero stationary state is stable, then we say that the commun-
ity is stable. Similarly as in the predator — prey system there may exist
a periodic regime which is formed as a result of effects of individual
factors of the system. Hence fixed regimes are represented by stationary
and periodic states.

A biological community is considered to be stable if some non-zero
fixed regime is stable and the stability theory of differential and dif-
ference equations enables one investigate the stability of models of
communities. A fixed regime of the model will be considered to be a
fixed regime of the community.

Note that in mathematical terminology the notions of equilibrium
and stationary solutions are synonymous and both terms may be used.

An appropriate form of the model is determined by the properties of
the community (i.e. size and structure of individual populations, the
sufficiency or otherwise of resources or the character and intensity of
the environmental influences). Parameters of the model are determined
by the specific situation and are obtained either experimentally, or by
a simulation on a computer.

In this book we shall not discuss methods of processing experimental
data, but rather make the object of our considerations the qualitative
properties of the model; namely, the existence and stability of fixed
regimes. These properties are usually dependent on some parameters.

Dynamical models of biological communities are interesting also
from the mathematical point of view. They may have properties which
are difficult to interpret and may also have properties which have yet
to be investigated mathematically. Some models (especially discrete)
lead to further theoretical investigations.

The book is divided into 4 chapters. The first three chapters deal with
models of single-, two-, or more-species communities and survey the
fundamental results of mathematical ecology. The authors hope that
these chapters are of interest to non-mathematicians. The last chapter
“From determinism to randomness’’ is purely mathematical. It descri-
bes the mechanism of the appearance of chaos in one-dimensional
discrete dynamical systems. These systems represent one of the two
fundamental models of population dynamics. Whether chaos exists in
real biological systems is still open to debate.
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age structure of the
population
amensalism

biomass
birth-rate

comensalism

community

competition

interspecies competition
intraspecies competition
death-rate

diversity

— differentiation of the population into

groups with respect to age

a relationship between two individuals
which is disadvantageous for one of
them and indifferent for the other

mass of organisms

the number of individuals in a given pop-
ulation born in a unit of time

a relationship between two individuals
which is advantageous for one of them
and indifferent for the other

a system of populations which live a long
time in a certain region

competition for food, habitat or other
necessities between individuals
competition between individuals of dif-
ferent species

competition between individuals of the
same species

the number of individuals in a given pop-
ulation which die in a unit of time

the number of species in a given com-
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munity together with the relative den-
sities of individual populations

ecosystem — the union of a biological community and
the environment in which it lives

mutualism — a relationship between two individuals
which is advantageous to both of them

population — all individuals of the same species living
in a given habitat

population density — the number of individuals per unit area
or volume of habitat

resilience — an ability of the ecosystem to resist dis-
turbance

survival-rate — the number of individuals which survive
to a given age

trophic level — organisms on the same degree of the

food chain



