STUDIES IN LOGIC

AND
THE FOUNDATIONS OF MATHEMATICS

VOLUME 130

S. ABRAMSKY / J. BARWISE / K. FINE / H.J. KEISLER / A.S. TROELSTRA
EDITORS

Language in Aetion

Categories, Lambdas and
Dynamiec Logice

J. VAN BENTHEM

NORTH-HOLLAND
AMSTERDAM * LONDON * NEW YORK * TOKYO

STUDIES IN LOGIC

AND

THE FOUNDATIONS OF MATHEMATICS

VOLUME 130

Honorary Editor:

P.SUPPES, Stanford

Liditors:

S. ABRAMSKY, London
J.BARWISE, Stanford
K. FINE, LosAngeles
H.J. KEISLER, Mudison
A.S. TROELSTRA. Amsterdam

NH,

[~

NORTH-HOLLAND
AMSTERDAM -+ LONDON * NEW YORK +« TOKYO

LANGUAGE IN ACTION

Categories, Lambdas and
Dynamic Logic

Johan VAN BENTHEM
Faculteit der Wiskunde en Informatica
Universiteit van Amsterdam
Amsterdam, The Netherlands

&

A0
0 4 A

NORTH-HOLLAND
AMSTERDAM +« LONDON * NEW YORK + TOKYO

ELSEVIER SCIENCE B.V.
Sara Burgerhartstraat 25
P.O. Box 211, 1000 AE Amsterdam, The Netherlands

First printing: 1991
Second impression: 1994

ISBN 0 444 89000 9
© 1991 ELSEVIER SCIENCE B.V. All rights reserved.

No part of this publication may be reproduced, stored in a retricval system or transmitted in any

form or by any means, clectronic, mechanical, photocopying, recording or otherwise, without

the prior written permission of the publisher, Elsevier Science B.V., Copyright &
Permissions Department, P.O. Box 521, 1000 AM Amsterdam, The Netherlands.

Special regulations for readers in the U.S.A.-This publication has been registered with the

Copyright Clearance Center Inc. (CCC), Salem, Massachusetts. Information can be obtained

from the CCC about conditions under which photocopies of parts of this publication may be

made in the U.S.A. All other copyright questions, including photocopying outside of the U.S.A.,
should be referred to the publisher, Elsevier Science B.V.

No responsibility is assumed by the publisher for any injury and/or damage to persons or
property as a matler of products liability, negligence or otherwise, or from any use or
operation of any methods, products, instructions or ideas contained in the material herein.

This book is printed on acid-frec paper.

Printed in The Netherlands

LANGUAGE IN ACTION
Categories, Lambdas and
Dynamic Logic

to the memory of my father

Abraham Karel van Benthem

PREFACE

This book has arisen out of a series of papers documenting some five years of
research into the logical foundations of Categorial Grammar, a grammatical paradigm
which has close analogies with Lambda Calculus and Type Theory. The technical theory
presented here is a natural outgrowth of an earlier interest in the interface between Logic
and Linguistics: in particular, the theory of generalized quantification developed in van
Benthem 1986A. Like many of my more linguistic colleagues in The Netherlands, I have
gradually found that a categorial framework, provided with a lambda calculus oriented
semantics, is a most convenient vehicle for generalizing semantic insights obtained in
various corners of natural language into one coherent theory. Moreover, this book is
meant to demonstrate to fellow logicians that the resulting applied lambda calculus is not
without its intrinsic logical interest either.

Nevertheless, theorizing at this level of abstraction has also led to a general change
in my thinking about language. In the final analysis, it seems to me now, the crucial issue
is not primarily to 'break the syntactic code’ of natural languages, but rather to understand
the cognitive functioning of the human mind. And the latter manifests itself not just in the
grammatical patterns of our sentences, but also in more global textual arrangement, steered
by discourse particles and interpunction, or even in the invisible rules guiding our
language games. Fortunately, as it happens, the various formal systems studied here as
engines for categorial grammatical analysis also admit of more 'procedural
interpretations, as logics of dynamic interpretation and inference. Thus, motives from
Computer Science also make their appearance, resulting in a shift from Categorial
Grammar to Dynamic Logic towards the end of the book. For a logician, this is not such a
dramatic move as it might seem: for instance, the technical setting for this shift lies in
Modal Logic, another earlier research interest of the present author (witness van Benthem
1985). At the moment, I cannot judge the precise significance of this emerging connection
between these various logical concerns: perhaps, human beings just cannot help singing

the same tune once in a while.

I would like to thank a number of people for their direct help in the actual
preparation of this manuscript: in particular, Dirk Roorda, Victor Sanchez and Anne
Troelstra have provided many useful comments. As to its incubation period, I have

profited for a long time from participation in an active Categorial Grammar community,

both in Holland and abroad, including such inventive colleagues as Wojciech
Buszkowski, Michael Moortgat and Frans Zwarts. Finally, for a more general intellectual
environment, I should also mention the 'Institute of Language, Logic and Information' at
the University of Amsterdam, which has provided a very pleasant environment for
someone who finds it hard to stay within the usual academic boundaries, and sometimes
even more heretically (rumour has it), to share the received value judgments and
intellectual dogmas of the logical profession.

I

Table of Contents

Preface

Introduction

1 Two Traditions

2 Lambda Calculus and Theory of Types
3 Categorial Grammar

A Logical Perspective

4 The Hierarchy of Implicational Logics
5 Proofs, Terms and Meanings

Proof Theory

6 Exploring Categorial Deduction
7 Cut Elimination and Decidability

8 Recognizing Power
Model Theory
9 Enumerating Readings

10 Computing Denotational Constraints
11 Boolean Structure

Variations and Extensions

12 Intensionality

13 Variable Polymorphism and Higher Type Theories

21

35

35
51

7

71

83

93

111

111

127

139

155

156
169

vii

viii

Toward a Logic of Information

14 Language Families

15 Modal Logic of Information Patterns
16 Relational Algebra of Control

17 Dynamic Logic

A Tour of Basic Logic

Bibliography

Index

185

188

203

225

251

271

327

345

I INTRODUCTION

In this first Part, the basic ingredients of this book will be presented, whose
interaction, and resulting logical theory, will then unfold subsequently.

1 Two Traditions

The idea that the objects of thought form a hierarchy of categories is an old one in
Philosophy. That this hierarchy may be based on function-argument relationships was
realized by two eminent mathematicians/philosophers in the last century, namely Gottlob
Frege and Edmund Husserl. Their influence may be traced in two subsequent streams of
logical investigation. One is that of mathematical ontology, where Bertrand Russell
developed his Theory of Types describing mathematical universes of individual objects,
functions over these, functionals over functions, et sursum. Although set theory in the
Zermelo style, rather than type theory, became the eventual 'lingua franca' of
Mathematics, the type-theoretic tradition in the foundations of mathematics has persisted to
this day, inspiring such important special research programs as the Lambda Calculus in its
course. A second stream arose in Philosophy, where Lesniewski and Ajdukiewicz
developed a technical theory of categories, which eventually became a paradigm of
Linguistics known as Categorial Grammar.

In the meantime, both streams have found applications within a single new area,
namely that of Computer Science. Type theories play a conspicuous role in the semantics
of programming languages, while categorial grammars are prominent in computational
processing of natural languages. In fact, a convergence may already be observed in the
seminal work of Richard Montague, where mathematically inspired type theories fed into
the semantics of natural languages. By now, however, a much richer picture is emerging
of possible contacts between the two streams: and the main purpose of this book is to set
out the basic ideas of logical syntax and semantics relating Categorial Grammar and
Lambda Calculus. In the process, it will also become clear that there remains no natural
frontier between the fields of mathematical linguistics and mathematical logic.

One pervasive concern in our treatment may be called fine-structure. Notably,
Montague's original system employed a very powerful type-theoretic machinery, much of
which is not actually involved in providing meanings for linguistic expressions. Thus, it

2 Chapter 1

may be compared to a syntactic paradigm like unrestricted rewrite grammars, which
generates all recursively enumerable languages, but which has to be 'fine-tuned' at various
lower levels (e.g., context-free, or regular) in order to get better estimates of the actual
syntactic complexity of linguistic constructions. Likewise, we shall be concerned here
with a spectrum of categorial calculi, corresponding to a hierarchy of fragments of the full
type-theoretic language, in order to get a more sensitive instrument for semantic analysis.
That such an interest in fragments and fine-structure, rather than extension and
generalization, of existing logical systems can be crucial in applications is also shown by
the example of computation. In contemporary Computer Science, the art has been to chip
off suitable pieces from such monoliths as 'Turing-computable functions' or 'predicate-
logically definable predicates'.

There is also a second theme in this book. Behind a linguistic paradigm such as
Categorial Grammar, there lies a more general perspective. In the final analysis,
understanding natural language is just one instance of the more general phenomenon of
information processing. And indeed, there is an interesting convergence to be recorded
nowadays between various logical paradigms directed toward the structural and procedural
aspects of information, such as Relevance Logic, Modal Logic or Linear Logic. Indeed,
much of the theory that we develop applies to this more general setting too, and hence
what started out as a mathematical study of a grammatical theory has gradually turned into
a kind of 'dynamic logic', independent from the particular encodings found in linguistic
syntax. We shall try to map out this broader perspective as a natural extension of our main
topic in the final Part of this book, which may in fact be read independently.

As will be clear from the preceding description, this is a book on the interface of a
number of disciplines: Mathematics, Linguistics and Computer Science. What we want to
present is a unifying logical perspective between these, developed in some mathematical
depth, without making a very detailed examination of the various ingredients. In
particular, our purpose is not to explain or motivate Categorial Grammar per se. For that,
the reader may consult the anthologies Oehrle, Bach & Wheeler 1988 or Buszkowski,
Marciszewski & van Benthem 1988, while van Benthem 1986 also provides some relevant
background in the theory of generalized quantification. Also, there is already a number of
standard references available for the Lambda Calculus as an enterprise in its own right,
which need no copying here: see Barendregt 1981 or Hindley & Seldin 1986, or the earlier
Gallin 1975 for more linguistically oriented manifestations. A good introduction to the
formal machinery of logical semantics for natural languages is Dowty, Wall & Peters

1981. And finally, some independent basic information on various forms of Modal and

Two Traditions 3

Dynamic Logic may be found in Bull & Segerberg 1984 and Harel 1984, while van
Benthem 1985 supplies more extensive mathematical background.

This book has been written for an audience with a certain sophistication in
mathematical logic, and non-parochial interests in investigating logical structures across
various fields of application. What is needed on the part of the reader is a certain
acquaintance with basic techniques from model theory and proof theory, both for classical
logic and some of its variations (lambda calculus, intensional logic). The necessary 'iron
rations' are surveyed in a special Appendix at the end (Part VII of this book).

The above description of contents for the present volume has emphasized a certain
research programme. What we would like to put on the map is the perspective of a
Categorial Hierarchy with an attendant mozaique of fragments of the Lambda Calculus,
viewed as a tool for studying both linguistic structures and dynamic procedures. But there
are also more concrete logical contributions to be reported here. The exposition to follow
involves a survey of a good deal of the relevant literature supporting the preceding picture,
while also presenting a number of technical logical results demonstrating its potential.
Explicit credits have been given whenever available: all other results presented would seem

to be new.

2 Lambda Calculus and Theory of Types

For a start, here is a short review of some basic notions and results in Lambda
Calculus and Theory of Types, that will recur in the Chapters to follow.

21 T Models and Lan
Types consist of some number of primitive types and all those which can be

formed out of them by means of a certain group of admissible operations. Common
primitive types in logical semantics include

e individual objects (‘entities")
t truth values
S intensional indices ('possible worlds', ‘computer states', ...)
Common type-forming operations are
(a, b) function type (‘from a-arguments to b-values')
aeb product type (‘ordered pairs')

In these lectures, the above primitive types will often be used for the sake of concrete
illustration: but, most of the theory presented is perfectly general. As for operations, we
shall work mainly with function types - although product types are very convenient when
it comes to practice.

Next, we introduce semantic structures. A standard model is a family of domains
D, , one for each type a, such that, for primitive a, D, is some arbitrary set (pending
further stipulations) and, for complex a,

Dap = DbDa (function space)

Dgep = D,xDy (Cartesian product)

Now, in order to refer to objects in such structures, we need a suitable language.
The simplest case is that of a 'lambda calculus', having enough variables (and when
desired, also constants) x, of each type a, as well as the following operations for
constructing complex terms:
Application If 6,1 are terms of types (a, b) , a respectively,
then o(1) isatermof type b
Abstraction If o isaterm of type b, x avariable of type a,
then Axe G is aterm of type (a, b)

6 Chapter 2

We shall be rather carefree in notation for terms henceforth, suppressing brackets

whenever convenient.

Remark. Notation.
Notations for types and lambda terms tend to vary across different research communities.
For instance, functional types are sometimes written with arrows:

(a—b),
and another well-known notation for application of terms is simple juxtaposition:

oT.
Our particular choice in this book reflects the Montague-Gallin tradition.
The latter will tend to generate large clusters of commas and brackets if pursued
consistently, so that the reader is urged to use any ad-hoc abbreviations that might appeal
to her. For instance, in many contexts, the basic type (e, (e, t)) of 'two-place predicates
of individuals' might be shortened to just

eet .
Likewise, an important type like that of 'determiners’' (see Chapter 3), whose official
notation reads ((e, t), ((e, t), t)) , might be abbreviated to the more convenient

(et) (et) t.

With product types also present, we may add suitable pairing and projection
functions to the language:
Pairing If o, 1 areterms of types a, b respectively,
then <o ,T> is a term of type aeb
Projection If ¢ isaterm of type aeb,
then m; (0) , Tr(0) are terms of types a, b, respectively.

In the language so far, one can form complex descriptions of functions
(‘procedures'), ascending to a meta-level in order to compare them as to equivalence,
etcetera. But, we can also add the basic comparative predicate itself to the object language,
being the identity:

If 6,1 are terms of the same type,
then o=t isa term of the truth value type t.
In the resulting language L, , a special primitive type t becomes distinguished.
If enough assumptions are made about the truth value domain, then the usual logical

operators can be defined in this 'type theory": notably, the Boolean connectives and the

Lambda Calculus and Theory of Types 7

universal and existential quantifiers (see Henkin 1963, Gallin 1975 or Lambek & Scott
1986 for full details). For instance, here are some simple equivalences:

T Axpe X = Axg® X (‘true’)

1l Axpeex; = Axpe T (‘false’)

) o=1 (negation)

oAy AX(t, (1,) X(@W) = Ax(, (i, v)* X(TXT) (conjunction)

VXa Axa* 0 = Axa* T (universal quantifier)

Conversely, the new language may also be set up from the start as a higher-order calculus
with the usual logical constants

-, A, vV, D, Vxa, Jx,, =.
(Henkin 1950 even adds such further amenities as a iota-operator describing objects via
definite descriptions.) The resulting system may also be described as a direct
generalization of first-order logic, second-order logic and so on through all finite levels.

Interpretation of these languages in the above standard models is straightforward,
using auxiliary assignments to free variables in the standard manner. (An ability to supply
such formalities when necessary is a typical illustration of the kind of technical facility
presupposed on the part of readers of this book.) Thus, we shall assume that, in any
model M, given some assignment of suitable objects u to variables x , aterm T with
free variables xi, .., X, has an appropriate corresponding semantic value

(T (X7, ey X /U], e U]

2.2 Axiomat li

Now, in an axiomatic approach to these systems, one sets up some reasonable
calculus of inference rules. Notably, we have the following key principle relating
application and abstraction:

Lambda Conversion

(Ax*7) (0) = [o/X]T,

provided that ¢ is free for x in T.
In the literature, this is sometimes called 'B-conversion'. Together with the obvious
equality of alphabetic variants (known under the name of '®-conversion'), as well as the
usual rules of inference for Identity - in particular, Replacement of Identicals - one
obtains the Typed Lambda Calculus.

