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Preface

This monograph is concerned with the notions of ditalgebras (an acronym for
“differential tensor algebras™) and the study of their categories of modules.
It involves reduction techniques which have proved to be very useful in the
development of the theory of representation of finite-dimensional algebras.
Our aim has been to present in a systematic, elementary and self-contained as
possible way some of the main results obtained with these methods. They were
originally introduced by the Kiev School in representation theory of algebras,
in an attempt to formalize and generalize matrix problems methods.

The presentation given here has many common features with the original one
of A. V. Roiter and M. Kleiner [46], in terms of differential graded categories,
as well as with the formulation given by Y. Drozd [28] (and further developed
by W. Crawley-Boevey [19] and [20]), in terms of bocses. It is clear that
some applications of these techniques, notably in the study of coverings in
representation theory of algebras, will require the categorical formulation of the
theory, as suggested in [30]. However, for the sake of simplicity, we preferred
to work here in the more concrete ring theoretical context of ditalgebras. We
assume from the reader some familiarity with the basics of representation
theory of algebras and homological algebra (including the basics of the theory
of additive categories with exact structures), which can be obtained from the
first sections of [29], [47] and [3] (respectively, [32] and [27]).

In the representation theory of finite-dimensional algebras, the notions of
finite, tame and wild representation type play a central role. An algebra is
of finite representation type if it has finitely many pairwise non-isomorphic
indecomposable modules. It is of wild representation type, or simply wild, if it
contains the problem of finding a normal form for pairs of square matrices over
a field under simultaneous conjugation by a non-singular matrix. Finally, it is
of tame representation type, or simply tame, if the pairwise non-isomorphic
indecomposable modules in each dimension can be described by a finite number

vii
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of one-parameter families. For precise definitions, see Sections 22 and 27. This
monograph includes a fresh point of view of well-known facts on tame and
wild ditalgebras, on tame and wild algebras, and on their modules. But there
are also some new results and some new proofs.

We will review, for instance, Drozd’s Tame and Wild Theorem, stating that
a finite-dimensional algebra over an algebraically closed field is either tame
or wild, but not both. We review also Crawley’s Theorem on the existence
of generic modules for tame finite-dimensional algebras over an algebraically
closed field, and his Structure Theorem for its Auslander—Reiten quiver.

Our approach presents a formal alternative to the use of bocses with underly-
ing additive categories and pull-back reduction constructions. This is replaced
by the use of some special dual basis and what we call “reduction by an admis-
sible module”. This approach permits to perform explicit calculations with a
reasonable effort. As an illustration of this, Section 24 includes a more con-
ceptual proof of the fact that critical bocses are wild than the original proof
of Drozd (see [19]) or than some of its subsequent simplifications (see [49]),
where an explicit bimodule which produces wildness is exhibited.

The presentation given here of the reduction by an admissible module is
more general than the one given in [6]. We believe that this approach has some
promising potential since it provides a systematic treatment of a wide variety
of reductions.

Let us comment on one interesting new result proved in Section 31. Let
K denote a field extension of our ground field k. As usual, if A is some
k-algebra, A-Mod denotes the category of left A-modules. We consider the
induced K-algebra A¥ = A ®, K. Recall that the endolength of a A-module
M is by definition the length of the right End A (M)°?-module M. A generic A-
module is an indecomposable A-module with finite endolength and not finitely
generated over A.

We will prove that if A is a finite-dimensional algebra over an algebraically
closed field k and the induced algebra AX is not wild, then every generic AX-
module is rationally induced from a generic A-module. More precisely, any
generic AX-module is of the form G ®,, K(t), where G is some generic A-
module equipped with a natural structure of A-k(z)-bimodule. This is related to
the study in [37], where it is shown that the extension of a field to its algebraic
closure preserves generic tameness.

Now assume that & is algebraically closed and let K = k(t), the rational
function field of k. It has been proved in [11] that AX is of finite representation
type if and only if every indecomposable AX-module is induced from a A-
module. In Section 31, we show that AX is not wild if and only if every generic
AX-module is rationally induced from a generic A-module. Our proof is derived
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from the compatibility of the scalar extension with reduction operations and
a “scalar extended version” of Crawley’s article [20] on the existence and
description of generic modules for tame algebras A over an algebraically
closed field k.

We have included a series of exercises in order to illustrate and enrich the
content of these notes. As usual, some of them contain parts of various research
works. We have added reference paragraphs at the end of some sections, where
we tried to provide fair recognition of previous work on the subject from which
these notes developed.

R. Bautista, L. Salmerén and R. Zuazua
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1

t-algebras and differentials

From now on k denotes a fixed ground field. Whenever we consider a k-algebra
or a bimodule, we always assume that the field k acts centrally on them. We
start with some basic notions and notation, and some elementary remarks.

Definition 1.1. We say that the k-algebra T is freely generated by the pair
(A, V) if A is a k-subalgebra of T, V is a A-A-subbimodule of T, and the
following universal property is satisfied: for any k-algebra B, any morphism
of k-algebras A—— B and any morphism of A-A-bimodules V—5 B, where
the structure of A-A-bimodule of B is obtained by restriction through ¢y,
there exists a unique morphism of k-algebras T—— B, which extends both ¢q
and ¢;.

Definition 1.2. Consider a k-algebra A and any A-A-bimodule V. For i > 2,
we write V&' for the tensor product V .V @4 --- Q4 V of i copies of V,
and set V& = A and V®' = V. The vector space To(V) = ;- V' admits
a natural structure of k-algebra with product determined by the canonical
isomorphism V® ® 4 V& —— VOt The algebra Ty(V) is called the tensor
algebra of V over A.

Lemma 1.3. Consider a k-algebra A and any A-A-bimodule V. Then:

(1) The tensor algebra T4(V) is freely generated by (A, V).

(2) If the algebra T is freely generated by (A, V), the morphism T4(V)—>T
determined by the inclusions of A and V in T is an isomorphism.

(3) Assume that T is an algebra freely generated by (A, V), and that V =
V'@ V" is a bimodule decomposition of the A-A-bimodule V. Then, the
subalgebra A’ of T generated by A U V' is freely generated by (A, V') and
T is freely generated by (A’, A’V" A").
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Proof. (1) and (2) are easy to show. We show (3): let 7; : V—— V' be the
projection and consider the algebra morphism T—5Tx(V') determined by the
inclusion of A in T4(V’) and 7. Consider also the morphism TA(V’)—”—>T
determined by the inclusion of A and V' in T'. Then, clearly, wo is the iden-
tity map, and the restriction of o to its image provides the isomorphism
T4(V') = A'. Now, consider the morphism TAr(A’V”A’)LT determined
by the inclusions of A" and A’V”A” in T. Consider also the morphism of
A-A-bimodules VLTA-(A’V”A’), which maps each v' € V' onto v’ € A,
and each v” € V" onto v” € A’V"”A’. Then, the morphism T—LTAr(A’V”A’)
determined by the inclusion of A in A" and ¥, is an inverse for ¢. O

Definition 1.4. We say that T is a graded k-algebra if T is a k-algebra which
admits a vector space decomposition T = @;>o[T]; such that [T];[T]; C
[T1iyj, forall i, j. Thus, [T]y is a subalgebra of T and each [T]; is a [T Jo-
subbimodule of T. The elements a € [T ; are called homogeneous of degree i,
and we write deg(a) = i.

We say that T is a t-algebra if T is a graded k-algebra and T is freely
generated by the pair ([T]o, [T])).

Remark 1.5. Consider a k-algebra A and any A-A-bimodule V:

(1) The tensor algebra Ta4(V) with its standard grading given by [TA(V)];
= V% s a graded algebra.

(2) If T is a t-algebra, and we make A = [T]yp and V = [T, then there is an
isomorphism of graded k-algebras To(V) = T if we consider the standard
grading on To(V). In particular, for each n, the product of n elements
induces an isomorphism

[Th @1y, [T (7, + - - By [THhi— [T
We often identify both bimodules.

Definition 1.6. Assume T is a graded k-algebra. Then we say that § is a
differential on T if § : T — T is a linear transformation such that 6([T];) C
[Tlig1, for all i, and § satisfies Leibniz rule: §(ab) = 8(a)b + (—1)%€@as(b),
for all homogeneous elements a,b € T.

Remark 1.7. If T is a graded k-algebra and § is a differential on T, then:

(1) By induction, we obtain the following formula, for any homogeneous
elementst, t, ..., t,eT

n
il
S(nnp---1,) = Z(—I)‘Z/=' L YRR T (73 /Y TR

i=l
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(2) The linear map 8 : T—T satisfies 8*(ab) = 8*(a)b + ad*(b), for any
homogeneous elements a,b € T. Again, by induction, we obtain the fol-
lowing formula, for any homogeneous elements t, . .., t,eT

n
) ’ )
S (hn---1,) = E tity- i 0 (U)ipitig2 -~ - Iy,
i=1

(3) From (1), (2) and (1.5), we obtain that if T is a t-algebra, the differential
8 and its square 8% are determined by their values on A = [Ty and on
V = |T),. In particular, we can also derive that 82(A) =0and 82 (V) =0
imply 8% = 0.

Lemma 1.8. Let T be a t-algebra. Denote A = [Ty and V = [T],. Assume
we have a pair of linear maps 8y : A— [T, and &, : V——[T |, such that
So(ab) = Sp(a)b + ady(b), §,(av) = dp(a)v + ad,(v) and §,(va) = §;(v)a —
véo(a), for a,b € A and v € V. Then, these maps extend uniquely to a dif-
ferential § : T—T.

Proof. Since T is a t-algebra, freely generated by (A, V), we may assume that
T = Ta(V), with its standard grading. We shall define a linear map §, from
each of the direct summands V®" of T to T. We use the same symbols 8, and §,
to denote their compositions with the inclusions to 7. Then, for n > 2, define
8, by the formula

n
8, (VI ® - @y = Z(—l)“‘“mvz <0161 (V)41 Vg2 - Uy,

i=1
where each v; € V. See Remark (1.7). This formula yields a well-defined lin-
earmap 8, : V®"——T, because §,(av;) = §o(a)v; + ad;(v;) and §;(v;_1a) =
81(vi—1)a — vi_16p(a), for any a € A. Then, there is a linear map § : T——T
which extends all these maps §,. It is clear that 6([T];) € [T];+,. It remains
to show that § satisfies Leibniz rule. By assumption, § already satisfies Leib-
niz rule for products of the form ab, av and va, witha,be€ A and ve V.
From this and the definition of §, it follows that § satisfies Leibniz rule for
products of the form aw and wa, with a € A and w € V®". To finish our
proof, it is enough to show that given u, = ®,_,v, and w,, = Q" v;, with
vy, v, € V, then §(u, @ wy) = 8(u,) ® wy, + (—1)degwny @ §(w,,). This is a
straightforward calculation using the definition of §. O
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Ditalgebras and modules

In this section, we introduce the basic objects studied in these notes. Namely,
ditalgebras and their categories of modules. Its study constitutes a natural
generalization of the theory of algebras and their categories of modules. At the
same time, it has proved to be a useful tool in establishing some deep results
in representation theory of algebras.

Definition 2.1. A differential t-algebra or ditalgebra A is by definition a pair
A = (T, 8), where T is at-algebra and § is a differential on T satisfying 8> = 0.
A morphism of ditalgebras ¢ : (T, 8) — (T, §') is a morphism of k-algebras
¢ : T — T, satisfying ([T ];) C [T');, forall i, and §'¢p = 3.
Clearly, we can consider the category of ditalgebras over k, where the
morphisms are composed as maps.

Definition 2.2. The category of modules (or representations) of the ditalgebra
A = (T, $), denoted by A-Mod, is defined as follows. Denote by A = A4 =
[T o, a k-subalgebra of T, and by V. = V4 = [T],, an A-A-subbimodule of T.
The objects of A-Mod are all the A-modules. Given M, N € A-Mod, a mor-
phism f : M — N in A-Mod is a pair f = (f°, f'), with f® € Homy(M, N)
and f' € Homy-4(V, Homg(M, N)) satisfying that

af®(m) = fam)+ f'(8@a))m),

for any a € A and m € M. The Hom-space in this category is denoted by
Hom (M, N). Given f € Hom4(M, N)and g € Hom4(N, L) in A-Mod, con-
sider the composition of morphisms of A-A-bimodules

sl il .
V@, V2 Homy (N, L) ® 4 Homg(M, N)—>Homy(M, L),

where the last morphism is induced by composition. Since T is a t-algebra, we
can identify V @4 V with [T],. Then the composition gf is defined, for any

4
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v € V, by the following

(gf® =gof%
EH'W=g"flw)+g' WP+ ® fH)).

The full subcategory of A-Mod consisting of all finite-dimensional objects will
be denoted by A-mod.

Proposition 2.3. Given a ditalgebra A, the definition above indeed gives rise
to a k-category A-Mod.

Proof. First we see that gf = ((gf)°, (gf)") is indeed a morphism. Clearly,
(gf)" € Homy(M, L). Let us verify that (gf)' € Homu-4(V, Hom;(M, L)).
For this, take v € V,a € Aand m € M, then

[(gf) (av)(m) = [g° f'(av)(m) + [g' (av) fO1(m)

+[m(g' ® f1)(S(av)))(m)

= ag’[f (v)(m)] — g' (@) f' (v)m)] + [ag' (v) fO1(m)
+[m(g' ® fHY(8(a) + ad(v))l(m)

= ag’[f' (v)(m)] — g' (S(@) [ f' ()m)] + [ag'(v) 01 (m)
+g' (@) f )m) + aln(g' ® £ HE)](m)

= ag’[ f'(v)(m)] + [ag' (v) fO1(m)
+alr(g' ® fH8(v)](m)

= al(gf)' ()](m).

Now, takea € A,v € Vand m € M, then

[(gf) (va)l(m) = [g° f' (va)](m) + [g' (va) fO1(m)
+[7(g' ® fNH(8(va))l(m)
= [ f'(v)a)(m) + (g' (v)a)[ fO(m)]
+[7(g' ® fH(8(v)a — vé(a))](m)
= gL f ' (w)am)] + (g'()lafO(m)]
+[7(g' ® fH(v)a — vé(a))l(m)
= gL f(v)am)] + (g' W) f(am) + f'(8(a))(m)]
+[7(g' ® fH$(w)a)(m) — [g'(v) f'(8(a))](m)
= g°Lf (v)am)] + (g' ) fO(am)]
+[7(g' ® fH)8(v)a)l(m)
= [ ()(am) + [g' (v) f*1(am)
+[7(g' ® f1)(8(v)))(am)
= [(gf)"(v))(am)
= [(gf) (v)al(m).
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Finally, gf € Hom4(M, L), because, fora € A and m € M, we have

[(gf)Nam) = [g° f*l(am)
= g%af (m) — f'(8(a))(m)]
= ¢"laf (m)] — g°Lf " (8(a)))(m)
= ag’[fm)] — g' (@) fO(m)] — g°Lf"(8(a))](m)
= [a(g" fO)lom)
— 8" f1(3(a) + g'8(a) O+ n(g' ® f1)(8%(a))][m]
= [a(g° f)lm) — (gf)" (8(a))lm]
= [a(gf)°)m) — (gf)" (8(a)[m].

Clearly, for each M € A-Mod, the morphism I, = (I, 0) plays the role
of an identity. Now we show that the composition is associative (it is clearly
bilinear). Consider the morphisms m-Ls N,N—%5Land L— K in A-Mod.

It is clear that [A(gf)]” = [(hg)f]°. In order to show that [h(gf)]' =
[(hg) f]', having in mind our identification V ® 4 V = [T ]», consider v € V
and let 8(v) = Y, u, ® w,, with u,, w, € V. Assume that, for each a

Sug) =Y ul, ®ul, and 8(w,)= Z w) ®wl,.
b ¢
Then
[h(gN'(v) = h%g ) (V) + h')gf)" + X, h'(u)(gf) (w,)
=hLe" 1w+ &' ) fO + X, 8" (o) fl(wa)] + h' (v)g° f°
+ 2, W) fwa) + &' (wa) £O+ X, g (who) f w2l
and
[(hg) f1'(v) = (hg)’ £ (v) + (he) (W) O + 3, (hg) (u.) £ (wy)
=h" fl(v) + (g (V) + h' (1)g° + X, ' (ua)g" (wa)l f°
+ Y [h8" (ua) + h'(u)g” + X, h' (ul)g W) f (w,).

Then, we have to show that

D R wag wi ) f wl) =Y kg W) £ (wa).

a.c a.b

We have

Z S(ug)w, + (_l)dcg("“)uus(wa) =4 (Z Ug ® w”) - 82(”) =0,

a

which implies the following equality in V ® 4 V ® 4 V = [T']3 (we use again
that T is a t-algebra)

§ 1 2 _ § 1 2
Uy ® Wy, ® Wy = Uyp ® Uyp & Wq-

a.c a,b
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Then, the following composition applied to the last equality gives the desired
result

/l
VRsiVesV = i

—~ S Hom;(M, K).

Hom/\(L K)®4s Homy (N, L) ®, Homi (M, N)

O

Lemma 2.4. Any morphism of ditalgebras ¢ : A—> A’ induces, by restriction,
a functor Fy : A'-Mod—— A-Mod. To give the explicit formula on morphisms,
denoteby A = Aand V = V4, and with A" and V' the corresponding objects
for the ditalgebra A'; consider also the morphisms ¢y : A — A’ and ¢, :
V', induced by ¢. Then, if M € A'-Mod, Fy(M) is the A-module obtamedfrom
M by restriction of scalars through ¢o. The receipt on morphisms is given, for
any (f°, f') € Homu (M, N), by Fo(f, f') = (f*, f'0).

If @ is surjective, then Fy is faithful and injective on objects. Moreover, if
¢+ A—— A" is another morphism of ditalgebras, then Fyy = FyFy .

Proof. We first show that Fy(f°, f') € Hom(Fs(M), F4(N)), whenever we
have (f°, f') € Hom4(M, N). Form € M and a € A, we have

Fo(f)’(am) = f°(am)
= [ lpo(a)m]
= ¢o(a) fO>m) — (' (¢o(a)))[m]
= af’(m)— f'¢1(8(a))m]
= aFy(f)°[m] — Fs(f)' (8(a))lm].
In order to show that F, preserves the composition, take f €
Hom_(M,N) and g € Homy(N, L). Therefore, [F«,(gf)]0 (gf) =
8" f° = [F4(g)F(f)1°. Moreover, forv € V withd(v) = Y, v! ® v?, we have
§'(p) = pd(v) =3, #(v!) ® p(v?). Therefore

[Fo(@) Fs()]' () = Fp(@) Fo(£) () + Fy(g) (W) Fo()°
+7(Fp(8)' @ Fs(£))(S(v))
=g () + &' (@) fO+ >, g' (P f(P(v}))
=g" (@) + g (PpW) O + (8" ® f1)S (@(v))
=(gf )'<¢><v))
= [Fs(eN]' ).

We have seen that Fg(gf) = Fy(g)Fs(f). Clearly, Fy preserves identities. [
Remark 2.5. Whenever A is a ditalgebra, there is a canonical embedding

L =1L,:A-Mod—> A-Mod,



